Label 44T48
Order \(1936\)
n \(44\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Learn more about

Group action invariants

Degree $n$ :  $44$
Transitive number $t$ :  $48$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,22)(4,21)(5,19)(6,20)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(23,30)(24,29)(25,28)(26,27)(31,44)(32,43)(33,42)(34,41)(35,40)(36,39)(37,38), (1,33,8,41)(2,34,7,42)(3,44,5,32)(4,43,6,31)(9,30,22,24)(10,29,21,23)(11,39,19,35)(12,40,20,36)(13,28,17,26)(14,27,18,25)(15,38)(16,37)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $D_{4}$ x 2, $C_4\times C_2$
16:  $C_2^2:C_4$
484:  22T8

Resolvents shown for degrees $\leq 29$


Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 11: None

Degree 22: 22T8

Low degree siblings

There are no siblings with degree $\leq 29$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.

Conjugacy classes

There are 130 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1936=2^{4} \cdot 11^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [1936, 116]
Character table: Data not available.