Properties

Label 42T176
Order \(1092\)
n \(42\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No
Group: $\PSL(2,13)$

Learn more about

Group action invariants

Degree $n$ :  $42$
Transitive number $t$ :  $176$
Group :  $\PSL(2,13)$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,21,38,36,13,29,27)(2,20,37,35,15,30,25)(3,19,39,34,14,28,26)(4,16,22,8,31,42,11)(5,18,23,7,32,41,10)(6,17,24,9,33,40,12), (1,7,12,14,19,37)(2,8,10,13,21,39)(3,9,11,15,20,38)(4,17,40,35,26,23)(5,16,42,36,25,24)(6,18,41,34,27,22)(28,29,30)(31,32,33)
$|\Aut(F/K)|$:  $3$

Low degree resolvents

None

Resolvents shown for degrees $\leq 10$

Subfields

Degree 2: None

Degree 3: None

Degree 6: None

Degree 7: None

Degree 14: $\PSL(2,13)$

Degree 21: None

Low degree siblings

There are no siblings with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 13, 13, 13, 1, 1, 1 $ $84$ $13$ $( 1,32,36,19, 7,24,30,37, 6,10,26,13,41)( 2,31,35,21, 8,23,28,39, 5,11,27,15, 42)( 3,33,34,20, 9,22,29,38, 4,12,25,14,40)$
$ 13, 13, 13, 1, 1, 1 $ $84$ $13$ $( 1, 6,19,13,30,32,10, 7,41,37,36,26,24)( 2, 5,21,15,28,31,11, 8,42,39,35,27, 23)( 3, 4,20,14,29,33,12, 9,40,38,34,25,22)$
$ 7, 7, 7, 7, 7, 7 $ $156$ $7$ $( 1,18,19,39,32,36,11)( 2,16,21,38,31,35,12)( 3,17,20,37,33,34,10) ( 4,14,26,42, 8,30,22)( 5,15,25,41, 7,29,23)( 6,13,27,40, 9,28,24)$
$ 7, 7, 7, 7, 7, 7 $ $156$ $7$ $( 1,32,18,36,19,11,39)( 2,31,16,35,21,12,38)( 3,33,17,34,20,10,37) ( 4, 8,14,30,26,22,42)( 5, 7,15,29,25,23,41)( 6, 9,13,28,27,24,40)$
$ 7, 7, 7, 7, 7, 7 $ $156$ $7$ $( 1,19,32,11,18,39,36)( 2,21,31,12,16,38,35)( 3,20,33,10,17,37,34) ( 4,26, 8,22,14,42,30)( 5,25, 7,23,15,41,29)( 6,27, 9,24,13,40,28)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $91$ $2$ $( 1,25)( 2,26)( 3,27)( 4,10)( 5,12)( 6,11)( 7,13)( 8,15)( 9,14)(16,32)(17,31) (18,33)(22,36)(23,34)(24,35)(28,37)(29,39)(30,38)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $182$ $3$ $( 1,36,31)( 2,35,33)( 3,34,32)( 4,30,13)( 5,29,14)( 6,28,15)( 7,10,38) ( 8,11,37)( 9,12,39)(16,27,23)(17,25,22)(18,26,24)(19,21,20)(40,42,41)$
$ 6, 6, 6, 6, 6, 6, 3, 3 $ $182$ $6$ $( 1,17,36,25,31,22)( 2,18,35,26,33,24)( 3,16,34,27,32,23)( 4, 7,30,10,13,38) ( 5, 9,29,12,14,39)( 6, 8,28,11,15,37)(19,20,21)(40,41,42)$

Group invariants

Order:  $1092=2^{2} \cdot 3 \cdot 7 \cdot 13$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  [1092, 25]
Character table:   
     2  2  1  2  1   .   .  .  .  .
     3  1  1  1  1   .   .  .  .  .
     7  1  .  .  .   .   .  1  1  1
    13  1  .  .  .   1   1  .  .  .

       1a 3a 2a 6a 13a 13b 7a 7b 7c
    2P 1a 3a 1a 3a 13b 13a 7c 7a 7b
    3P 1a 1a 2a 2a 13a 13b 7b 7c 7a
    5P 1a 3a 2a 6a 13b 13a 7c 7a 7b
    7P 1a 3a 2a 6a 13b 13a 1a 1a 1a
   11P 1a 3a 2a 6a 13b 13a 7b 7c 7a
   13P 1a 3a 2a 6a  1a  1a 7a 7b 7c

X.1     1  1  1  1   1   1  1  1  1
X.2     7  1 -1 -1   A  *A  .  .  .
X.3     7  1 -1 -1  *A   A  .  .  .
X.4    12  .  .  .  -1  -1  B  C  D
X.5    12  .  .  .  -1  -1  C  D  B
X.6    12  .  .  .  -1  -1  D  B  C
X.7    13  1  1  1   .   . -1 -1 -1
X.8    14 -1  2 -1   1   1  .  .  .
X.9    14 -1 -2  1   1   1  .  .  .

A = -E(13)-E(13)^3-E(13)^4-E(13)^9-E(13)^10-E(13)^12
  = (1-Sqrt(13))/2 = -b13
B = -E(7)^3-E(7)^4
C = -E(7)^2-E(7)^5
D = -E(7)-E(7)^6