Properties

Label 40T9
Order \(40\)
n \(40\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $C_4\times D_5$

Learn more about

Group action invariants

Degree $n$ :  $40$
Transitive number $t$ :  $9$
Group :  $C_4\times D_5$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,25)(2,26)(3,28)(4,27)(5,24)(6,23)(7,21)(8,22)(9,19)(10,20)(11,17)(12,18)(13,16)(14,15)(29,38)(30,37)(31,40)(32,39)(33,35)(34,36), (1,37,35,32,28,23,20,15,12,8,2,38,36,31,27,24,19,16,11,7)(3,40,33,29,25,22,17,14,9,6,4,39,34,30,26,21,18,13,10,5)
$|\Aut(F/K)|$:  $40$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $C_4\times C_2$
10:  $D_{5}$
20:  $D_{10}$

Resolvents shown for degrees $\leq 10$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_4$ x 2, $C_2^2$

Degree 5: $D_{5}$

Degree 8: $C_4\times C_2$

Degree 10: $D_5$, $D_{10}$ x 2

Degree 20: 20T4, 20T6 x 2

Low degree siblings

There are no siblings with degree $\leq 10$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $5$ $2$ $( 1, 3)( 2, 4)( 5,38)( 6,37)( 7,39)( 8,40)( 9,36)(10,35)(11,33)(12,34)(13,31) (14,32)(15,29)(16,30)(17,27)(18,28)(19,25)(20,26)(21,24)(22,23)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $5$ $2$ $( 1, 4)( 2, 3)( 5,37)( 6,38)( 7,40)( 8,39)( 9,35)(10,36)(11,34)(12,33)(13,32) (14,31)(15,30)(16,29)(17,28)(18,27)(19,26)(20,25)(21,23)(22,24)$
$ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 $ $5$ $4$ $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,38,10,37)(11,40,12,39)(13,36,14,35)(15,33,16,34) (17,31,18,32)(19,29,20,30)(21,27,22,28)(23,25,24,26)$
$ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 $ $5$ $4$ $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,37,10,38)(11,39,12,40)(13,35,14,36)(15,34,16,33) (17,32,18,31)(19,30,20,29)(21,28,22,27)(23,26,24,25)$
$ 20, 20 $ $2$ $20$ $( 1, 7,11,16,19,24,27,31,36,38, 2, 8,12,15,20,23,28,32,35,37)( 3, 5,10,13,18, 21,26,30,34,39, 4, 6, 9,14,17,22,25,29,33,40)$
$ 20, 20 $ $2$ $20$ $( 1, 8,11,15,19,23,27,32,36,37, 2, 7,12,16,20,24,28,31,35,38)( 3, 6,10,14,18, 22,26,29,34,40, 4, 5, 9,13,17,21,25,30,33,39)$
$ 10, 10, 10, 10 $ $2$ $10$ $( 1,11,19,27,36, 2,12,20,28,35)( 3,10,18,26,34, 4, 9,17,25,33)( 5,13,21,30,39, 6,14,22,29,40)( 7,16,24,31,38, 8,15,23,32,37)$
$ 5, 5, 5, 5, 5, 5, 5, 5 $ $2$ $5$ $( 1,12,19,28,36)( 2,11,20,27,35)( 3, 9,18,25,34)( 4,10,17,26,33) ( 5,14,21,29,39)( 6,13,22,30,40)( 7,15,24,32,38)( 8,16,23,31,37)$
$ 20, 20 $ $2$ $20$ $( 1,15,27,37,12,24,35, 8,19,32, 2,16,28,38,11,23,36, 7,20,31)( 3,14,26,40, 9, 21,33, 6,18,29, 4,13,25,39,10,22,34, 5,17,30)$
$ 20, 20 $ $2$ $20$ $( 1,16,27,38,12,23,35, 7,19,31, 2,15,28,37,11,24,36, 8,20,32)( 3,13,26,39, 9, 22,33, 5,18,30, 4,14,25,40,10,21,34, 6,17,29)$
$ 5, 5, 5, 5, 5, 5, 5, 5 $ $2$ $5$ $( 1,19,36,12,28)( 2,20,35,11,27)( 3,18,34, 9,25)( 4,17,33,10,26) ( 5,21,39,14,29)( 6,22,40,13,30)( 7,24,38,15,32)( 8,23,37,16,31)$
$ 10, 10, 10, 10 $ $2$ $10$ $( 1,20,36,11,28, 2,19,35,12,27)( 3,17,34,10,25, 4,18,33, 9,26)( 5,22,39,13,29, 6,21,40,14,30)( 7,23,38,16,32, 8,24,37,15,31)$
$ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 $ $1$ $4$ $( 1,23, 2,24)( 3,22, 4,21)( 5,25, 6,26)( 7,28, 8,27)( 9,30,10,29)(11,32,12,31) (13,33,14,34)(15,36,16,35)(17,39,18,40)(19,37,20,38)$
$ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 $ $1$ $4$ $( 1,24, 2,23)( 3,21, 4,22)( 5,26, 6,25)( 7,27, 8,28)( 9,29,10,30)(11,31,12,32) (13,34,14,33)(15,35,16,36)(17,40,18,39)(19,38,20,37)$

Group invariants

Order:  $40=2^{3} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [40, 5]
Character table:   
      2  3  3  3  3  3  3   2   2   2   2   2   2   2   2  3  3
      5  1  1  .  .  .  .   1   1   1   1   1   1   1   1  1  1

        1a 2a 2b 2c 4a 4b 20a 20b 10a  5a 20c 20d  5b 10b 4c 4d
     2P 1a 1a 1a 1a 2a 2a 10a 10a  5b  5b 10b 10b  5a  5a 2a 2a
     3P 1a 2a 2b 2c 4b 4a 20d 20c 10b  5b 20b 20a  5a 10a 4d 4c
     5P 1a 2a 2b 2c 4a 4b  4d  4c  2a  1a  4d  4c  1a  2a 4c 4d
     7P 1a 2a 2b 2c 4b 4a 20d 20c 10b  5b 20b 20a  5a 10a 4d 4c
    11P 1a 2a 2b 2c 4b 4a 20b 20a 10a  5a 20d 20c  5b 10b 4d 4c
    13P 1a 2a 2b 2c 4a 4b 20c 20d 10b  5b 20a 20b  5a 10a 4c 4d
    17P 1a 2a 2b 2c 4a 4b 20c 20d 10b  5b 20a 20b  5a 10a 4c 4d
    19P 1a 2a 2b 2c 4b 4a 20b 20a 10a  5a 20d 20c  5b 10b 4d 4c

X.1      1  1  1  1  1  1   1   1   1   1   1   1   1   1  1  1
X.2      1  1 -1 -1 -1 -1   1   1   1   1   1   1   1   1  1  1
X.3      1  1 -1 -1  1  1  -1  -1   1   1  -1  -1   1   1 -1 -1
X.4      1  1  1  1 -1 -1  -1  -1   1   1  -1  -1   1   1 -1 -1
X.5      1 -1 -1  1  A -A  -A   A  -1   1  -A   A   1  -1  A -A
X.6      1 -1 -1  1 -A  A   A  -A  -1   1   A  -A   1  -1 -A  A
X.7      1 -1  1 -1  A -A   A  -A  -1   1   A  -A   1  -1 -A  A
X.8      1 -1  1 -1 -A  A  -A   A  -1   1  -A   A   1  -1  A -A
X.9      2 -2  .  .  .  .   B  -B  *D -*D   C  -C  -D   D  E -E
X.10     2 -2  .  .  .  .   C  -C   D  -D   B  -B -*D  *D  E -E
X.11     2 -2  .  .  .  .  -C   C   D  -D  -B   B -*D  *D -E  E
X.12     2 -2  .  .  .  .  -B   B  *D -*D  -C   C  -D   D -E  E
X.13     2  2  .  .  .  .   D   D -*D -*D  *D  *D  -D  -D -2 -2
X.14     2  2  .  .  .  .  *D  *D  -D  -D   D   D -*D -*D -2 -2
X.15     2  2  .  .  .  . -*D -*D  -D  -D  -D  -D -*D -*D  2  2
X.16     2  2  .  .  .  .  -D  -D -*D -*D -*D -*D  -D  -D  2  2

A = -E(4)
  = -Sqrt(-1) = -i
B = -E(20)-E(20)^9
C = -E(20)^13-E(20)^17
D = -E(5)-E(5)^4
  = (1-Sqrt(5))/2 = -b5
E = 2*E(4)
  = 2*Sqrt(-1) = 2i