Properties

Label 40T62
40T62 1 18 1->18 29 1->29 2 17 2->17 30 2->30 3 20 3->20 32 3->32 4 19 4->19 31 4->31 5 25 5->25 6 26 6->26 7 27 7->27 8 28 8->28 9 12 9->12 39 9->39 10 11 10->11 40 10->40 38 11->38 37 12->37 13 13->2 13->37 14 14->1 14->38 15 15->3 15->40 16 16->4 16->39 17->4 17->13 18->3 18->14 19->2 19->16 20->1 20->15 21 21->8 21->25 22 22->7 22->26 23 23->5 23->28 24 24->6 24->27 25->31 35 25->35 26->32 36 26->36 27->30 33 27->33 28->29 34 28->34 29->19 29->23 30->20 30->24 31->18 31->21 32->17 32->22 33->9 33->16 34->10 34->15 35->12 35->13 36->11 36->14 37->23 37->35 38->24 38->36 39->22 39->33 40->21 40->34
Degree $40$
Order $120$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $S_5$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(40, 62);
 

Group invariants

Abstract group:  $S_5$
Copy content magma:IdentifyGroup(G);
 
Order:  $120=2^{3} \cdot 3 \cdot 5$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  no
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $40$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $62$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $4$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,29,19,2,30,20)(3,32,17,4,31,18)(5,25,35,13,37,23)(6,26,36,14,38,24)(7,27,33,16,39,22)(8,28,34,15,40,21)(9,12)(10,11)$, $(1,18,14)(2,17,13)(3,20,15)(4,19,16)(9,39,33)(10,40,34)(11,38,36)(12,37,35)(21,25,31)(22,26,32)(23,28,29)(24,27,30)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: $S_5$

Degree 8: None

Degree 10: $S_5$, $S_5$

Degree 20: 20T30, 20T32, 20T35

Low degree siblings

5T5, 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{40}$ $1$ $1$ $0$ $()$
2A $2^{20}$ $10$ $2$ $20$ $( 1, 2)( 3, 4)( 5,13)( 6,14)( 7,16)( 8,15)( 9,12)(10,11)(17,18)(19,20)(21,34)(22,33)(23,35)(24,36)(25,37)(26,38)(27,39)(28,40)(29,30)(31,32)$
2B $2^{20}$ $15$ $2$ $20$ $( 1,35)( 2,36)( 3,33)( 4,34)( 5,32)( 6,31)( 7,29)( 8,30)( 9,25)(10,26)(11,28)(12,27)(13,23)(14,24)(15,21)(16,22)(17,20)(18,19)(37,40)(38,39)$
3A $3^{12},1^{4}$ $20$ $3$ $24$ $( 1,19,30)( 2,20,29)( 3,17,31)( 4,18,32)( 5,35,37)( 6,36,38)( 7,33,39)( 8,34,40)(13,23,25)(14,24,26)(15,21,28)(16,22,27)$
4A $4^{10}$ $30$ $4$ $30$ $( 1, 7,35,29)( 2, 8,36,30)( 3, 5,33,32)( 4, 6,34,31)( 9,24,25,14)(10,23,26,13)(11,22,28,16)(12,21,27,15)(17,40,20,37)(18,39,19,38)$
5A $5^{8}$ $24$ $5$ $32$ $( 1,37,10,22,19)( 2,38, 9,21,20)( 3,39,11,23,17)( 4,40,12,24,18)( 5,26,34,16,32)( 6,25,33,15,31)( 7,28,36,13,29)( 8,27,35,14,30)$
6A $6^{6},2^{2}$ $20$ $6$ $32$ $( 1,29,19, 2,30,20)( 3,32,17, 4,31,18)( 5,25,35,13,37,23)( 6,26,36,14,38,24)( 7,27,33,16,39,22)( 8,28,34,15,40,21)( 9,12)(10,11)$

Malle's constant $a(G)$:     $1/20$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 3A 4A 5A 6A
Size 1 10 15 20 30 24 20
2 P 1A 1A 1A 3A 2B 5A 3A
3 P 1A 2A 2B 1A 4A 5A 2A
5 P 1A 2A 2B 3A 4A 1A 6A
Type
120.34.1a R 1 1 1 1 1 1 1
120.34.1b R 1 1 1 1 1 1 1
120.34.4a R 4 2 0 1 0 1 1
120.34.4b R 4 2 0 1 0 1 1
120.34.5a R 5 1 1 1 1 0 1
120.34.5b R 5 1 1 1 1 0 1
120.34.6a R 6 0 2 0 0 1 0

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed