Properties

Label 3T2
Order \(6\)
n \(3\)
Cyclic No
Abelian No
Solvable Yes
Primitive Yes
$p$-group No
Group: $S_3$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $3$
Transitive number $t$ :  $2$
Group :  $S_3$
CHM label :  $S3$
Parity:  $-1$
Primitive:  Yes
Generators:  (1,3), (1,2)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

6T2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1 $ $1$ $1$ $()$
$ 2, 1 $ $3$ $2$ $(2,3)$
$ 3 $ $2$ $3$ $(1,2,3)$

Group invariants

Order:  $6=2 \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [6, 1]
Character table:   
     2  1  1  .
     3  1  .  1

       1a 2a 3a
    2P 1a 1a 3a
    3P 1a 2a 1a

X.1     1 -1  1
X.2     2  . -1
X.3     1  1  1

Indecomposable integral representations

Complete list of indecomposable integral representations:

Name Dim $(1,2,3) \mapsto $ $(1,2) \mapsto $
Triv $1$ $\left(\begin{array}{r}1\end{array}\right)$ $\left(\begin{array}{r}1\end{array}\right)$
Sign $1$ $\left(\begin{array}{r}1\end{array}\right)$ $\left(\begin{array}{r}-1\end{array}\right)$
$L$ $2$ $\left(\begin{array}{rr}1 & 0\\0 & 1\end{array}\right)$ $\left(\begin{array}{rr}0 & 1\\1 & 0\end{array}\right)$
$A$ $2$ $\left(\begin{array}{rr}0 & 1\\-1 & -1\end{array}\right)$ $\left(\begin{array}{rr}1 & 0\\-1 & -1\end{array}\right)$
$A'$ $2$ $\left(\begin{array}{rr}0 & 1\\-1 & -1\end{array}\right)$ $\left(\begin{array}{rr}-1 & 0\\1 & 1\end{array}\right)$
$(A,\textrm{Sign})$ $3$ $\left(\begin{array}{rrr}0 & 1 & 0\\-1 & -1 & 0\\1 & 0 & 1\end{array}\right)$ $\left(\begin{array}{rrr}1 & 0 & 0\\-1 & -1 & 0\\-1 & 0 & -1\end{array}\right)$
$(A',\textrm{Triv})$ $3$ $\left(\begin{array}{rrr}0 & 1 & 0\\-1 & -1 & 0\\1 & 0 & 1\end{array}\right)$ $\left(\begin{array}{rrr}-1 & 0 & 0\\1 & 1 & 0\\1 & 0 & 1\end{array}\right)$
$(A,L)$ $4$ $\left(\begin{array}{rrrr}0 & 1 & 0 & 0\\-1 & -1 & 0 & 0\\-1 & 0 & 1 & 0\\1 & 0 & 0 & 1\end{array}\right)$ $\left(\begin{array}{rrrr}1 & 0 & 0 & 0\\-1 & -1 & 0 & 0\\1 & 0 & 0 & 1\\-1 & 0 & 1 & 0\end{array}\right)$
$(A',L)$ $4$ $\left(\begin{array}{rrrr}0 & 1 & 0 & 0\\-1 & -1 & 0 & 0\\1 & 0 & 1 & 0\\1 & 0 & 0 & 1\end{array}\right)$ $\left(\begin{array}{rrrr}-1 & 0 & 0 & 0\\1 & 1 & 0 & 0\\1 & 0 & 0 & 1\\1 & 0 & 1 & 0\end{array}\right)$
$(A+A',L)$ $6$ $\left(\begin{array}{rrrrrr}0 & 0 & 1 & 0 & 0 & 0\\0 & 0 & 0 & 1 & 0 & 0\\0 & 0 & 0 & 0 & 1 & 0\\0 & 0 & 0 & 0 & 0 & 1\\1 & 0 & 0 & 0 & 0 & 0\\0 & 1 & 0 & 0 & 0 & 0\end{array}\right)$ $\left(\begin{array}{rrrrrr}0 & 0 & 0 & 1 & 0 & 0\\0 & 0 & 1 & 0 & 0 & 0\\0 & 1 & 0 & 0 & 0 & 0\\1 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 1\\0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$
The decomposition of an arbitrary integral representation as a direct sum of indecomposables is not unique, in general. It is unique up to the following isomorphisms:
Triv $\oplus$ $(A',L)$ $\cong$ $L$ $\oplus$ $(A',\textrm{Triv})$
Sign $\oplus$ $(A,L)$ $\cong$ $L$ $\oplus$ $(A,\textrm{Sign})$
Triv $\oplus$ $(A+A',L)$ $\cong$ $(A,L)$ $\oplus$ $(A',L)$