Properties

Label 3T2
Degree $3$
Order $6$
Cyclic no
Abelian no
Solvable yes
Primitive yes
$p$-group no
Group: $S_3$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(3, 2);
 

Group action invariants

Degree $n$:  $3$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $2$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $S_3$
CHM label:  $S3$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,3), (1,2)
magma: Generators(G);
 

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

6T2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1 $ $1$ $1$ $()$
$ 2, 1 $ $3$ $2$ $(2,3)$
$ 3 $ $2$ $3$ $(1,2,3)$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $6=2 \cdot 3$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  6.1
magma: IdentifyGroup(G);
 
Character table:   
     2  1  1  .
     3  1  .  1

       1a 2a 3a
    2P 1a 1a 3a
    3P 1a 2a 1a

X.1     1 -1  1
X.2     2  . -1
X.3     1  1  1

magma: CharacterTable(G);
 

Indecomposable integral representations

Complete list of indecomposable integral representations:

Name Dim $(1,2,3) \mapsto $ $(1,2) \mapsto $
Triv $1$ $\left(\begin{array}{r}1\end{array}\right)$ $\left(\begin{array}{r}1\end{array}\right)$
Sign $1$ $\left(\begin{array}{r}1\end{array}\right)$ $\left(\begin{array}{r}-1\end{array}\right)$
$L$ $2$ $\left(\begin{array}{rr}1 & 0\\0 & 1\end{array}\right)$ $\left(\begin{array}{rr}0 & 1\\1 & 0\end{array}\right)$
$A$ $2$ $\left(\begin{array}{rr}0 & 1\\-1 & -1\end{array}\right)$ $\left(\begin{array}{rr}1 & 0\\-1 & -1\end{array}\right)$
$A'$ $2$ $\left(\begin{array}{rr}0 & 1\\-1 & -1\end{array}\right)$ $\left(\begin{array}{rr}-1 & 0\\1 & 1\end{array}\right)$
$(A,\textrm{Sign})$ $3$ $\left(\begin{array}{rrr}0 & 1 & 0\\-1 & -1 & 0\\1 & 0 & 1\end{array}\right)$ $\left(\begin{array}{rrr}1 & 0 & 0\\-1 & -1 & 0\\-1 & 0 & -1\end{array}\right)$
$(A',\textrm{Triv})$ $3$ $\left(\begin{array}{rrr}0 & 1 & 0\\-1 & -1 & 0\\1 & 0 & 1\end{array}\right)$ $\left(\begin{array}{rrr}-1 & 0 & 0\\1 & 1 & 0\\1 & 0 & 1\end{array}\right)$
$(A,L)$ $4$ $\left(\begin{array}{rrrr}0 & 1 & 0 & 0\\-1 & -1 & 0 & 0\\-1 & 0 & 1 & 0\\1 & 0 & 0 & 1\end{array}\right)$ $\left(\begin{array}{rrrr}1 & 0 & 0 & 0\\-1 & -1 & 0 & 0\\1 & 0 & 0 & 1\\-1 & 0 & 1 & 0\end{array}\right)$
$(A',L)$ $4$ $\left(\begin{array}{rrrr}0 & 1 & 0 & 0\\-1 & -1 & 0 & 0\\1 & 0 & 1 & 0\\1 & 0 & 0 & 1\end{array}\right)$ $\left(\begin{array}{rrrr}-1 & 0 & 0 & 0\\1 & 1 & 0 & 0\\1 & 0 & 0 & 1\\1 & 0 & 1 & 0\end{array}\right)$
$(A+A',L)$ $6$ $\left(\begin{array}{rrrrrr}0 & 0 & 1 & 0 & 0 & 0\\0 & 0 & 0 & 1 & 0 & 0\\0 & 0 & 0 & 0 & 1 & 0\\0 & 0 & 0 & 0 & 0 & 1\\1 & 0 & 0 & 0 & 0 & 0\\0 & 1 & 0 & 0 & 0 & 0\end{array}\right)$ $\left(\begin{array}{rrrrrr}0 & 0 & 0 & 1 & 0 & 0\\0 & 0 & 1 & 0 & 0 & 0\\0 & 1 & 0 & 0 & 0 & 0\\1 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 1\\0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$
The decomposition of an arbitrary integral representation as a direct sum of indecomposables is not unique, in general. It is unique up to the following isomorphisms:
Triv $\oplus$ $(A',L)$ $\cong$ $L$ $\oplus$ $(A',\textrm{Triv})$
Sign $\oplus$ $(A,L)$ $\cong$ $L$ $\oplus$ $(A,\textrm{Sign})$
Triv $\oplus$ $(A+A',L)$ $\cong$ $(A,L)$ $\oplus$ $(A',L)$