Label 39T21
Order \(507\)
n \(39\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $C_{13}\times C_{13}:C_3$

Learn more about

Group action invariants

Degree $n$ :  $39$
Transitive number $t$ :  $21$
Group :  $C_{13}\times C_{13}:C_3$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,28,22,11,35,20,9,31,24,2,38,19,13,39,25,10,37,23,12,33,16,7,32,18,4,30,21,5,34,15,8,36,14,3,29,26,6,27,17), (1,21,27,8,23,34,7,24,33,13,17,38,11,15,28,3,16,36,4,19,32,10,22,39,9,14,35,6,18,29,5,25,30,12,20,37,2,26,31)
$|\Aut(F/K)|$:  $13$

Low degree resolvents

|G/N|Galois groups for stem field(s)
3:  $C_3$
13:  $C_{13}$
39:  $C_{13}:C_3$, $C_{39}$

Resolvents shown for degrees $\leq 47$


Degree 3: $C_3$

Degree 13: None

Low degree siblings

39T21 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 91 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $507=3 \cdot 13^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [507, 3]
Character table: Data not available.