Properties

Label 39T2
Order \(39\)
n \(39\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $C_{13}:C_3$

Learn more about

Group action invariants

Degree $n$ :  $39$
Transitive number $t$ :  $2$
Group :  $C_{13}:C_3$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,14,6)(2,15,4)(3,13,5)(7,30,23)(8,28,24)(9,29,22)(10,16,31)(11,17,32)(12,18,33)(19,20,21)(25,35,37)(26,36,38)(27,34,39), (1,3,2)(4,11,30)(5,12,28)(6,10,29)(7,21,18)(8,19,16)(9,20,17)(13,37,32)(14,38,33)(15,39,31)(22,25,36)(23,26,34)(24,27,35)
$|\Aut(F/K)|$:  $39$

Low degree resolvents

|G/N|Galois groups for stem field(s)
3:  $C_3$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: $C_3$

Degree 13: $C_{13}:C_3$

Low degree siblings

13T3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $13$ $3$ $( 1, 2, 3)( 4,30,11)( 5,28,12)( 6,29,10)( 7,18,21)( 8,16,19)( 9,17,20) (13,32,37)(14,33,38)(15,31,39)(22,36,25)(23,34,26)(24,35,27)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $13$ $3$ $( 1, 3, 2)( 4,11,30)( 5,12,28)( 6,10,29)( 7,21,18)( 8,19,16)( 9,20,17) (13,37,32)(14,38,33)(15,39,31)(22,25,36)(23,26,34)(24,27,35)$
$ 13, 13, 13 $ $3$ $13$ $( 1, 4, 7,12,13,17,19,24,25,29,31,34,38)( 2, 5, 8,10,14,18,20,22,26,30,32,35, 39)( 3, 6, 9,11,15,16,21,23,27,28,33,36,37)$
$ 13, 13, 13 $ $3$ $13$ $( 1, 7,13,19,25,31,38, 4,12,17,24,29,34)( 2, 8,14,20,26,32,39, 5,10,18,22,30, 35)( 3, 9,15,21,27,33,37, 6,11,16,23,28,36)$
$ 13, 13, 13 $ $3$ $13$ $( 1,13,25,38,12,24,34, 7,19,31, 4,17,29)( 2,14,26,39,10,22,35, 8,20,32, 5,18, 30)( 3,15,27,37,11,23,36, 9,21,33, 6,16,28)$
$ 13, 13, 13 $ $3$ $13$ $( 1,24, 4,25, 7,29,12,31,13,34,17,38,19)( 2,22, 5,26, 8,30,10,32,14,35,18,39, 20)( 3,23, 6,27, 9,28,11,33,15,36,16,37,21)$

Group invariants

Order:  $39=3 \cdot 13$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [39, 1]
Character table:   
     3  1  1  1   .   .   .   .
    13  1  .  .   1   1   1   1

       1a 3a 3b 13a 13b 13c 13d
    2P 1a 3b 3a 13b 13c 13d 13a
    3P 1a 1a 1a 13a 13b 13c 13d
    5P 1a 3b 3a 13b 13c 13d 13a
    7P 1a 3a 3b 13d 13a 13b 13c
   11P 1a 3b 3a 13d 13a 13b 13c
   13P 1a 3a 3b  1a  1a  1a  1a

X.1     1  1  1   1   1   1   1
X.2     1  A /A   1   1   1   1
X.3     1 /A  A   1   1   1   1
X.4     3  .  .   B   C  /B  /C
X.5     3  .  .   C  /B  /C   B
X.6     3  .  .  /B  /C   B   C
X.7     3  .  .  /C   B   C  /B

A = E(3)^2
  = (-1-Sqrt(-3))/2 = -1-b3
B = E(13)+E(13)^3+E(13)^9
C = E(13)^2+E(13)^5+E(13)^6