Label 38T37
Order \(38988\)
n \(38\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Learn more about

Group action invariants

Degree $n$:  $38$
Transitive number $t$:  $37$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,20,9,21,17,22,6,23,14,24,3,25,11,26,19,27,8,28,16,29,5,30,13,31,2,32,10,33,18,34,7,35,15,36,4,37,12,38), (1,22,16,25,10,20)(2,26,8,31,17,29)(3,30,19,37,5,38)(4,34,11,24,12,28)(6,23,14,36,7,27)(9,35)(13,32,15,21,18,33)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $S_3$, $C_6$ x 3
12:  $D_{6}$, $C_6\times C_2$
18:  $S_3\times C_3$, $D_{9}$
36:  $C_6\times S_3$, $D_{18}$
54:  18T19
108:  36T69

Resolvents shown for degrees $\leq 47$


Degree 2: $C_2$

Degree 19: None

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 51 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $38988=2^{2} \cdot 3^{3} \cdot 19^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.