Show commands: Magma
Group invariants
Abstract group: | $C_5\times F_7$ |
| |
Order: | $210=2 \cdot 3 \cdot 5 \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $35$ |
| |
Transitive number $t$: | $10$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $5$ |
| |
Generators: | $(1,28,25,2,29,21,3,30,22,4,26,23,5,27,24)(6,13,35,7,14,31,8,15,32,9,11,33,10,12,34)(16,18,20,17,19)$, $(1,16,21,11,31,26)(2,17,22,12,32,27)(3,18,23,13,33,28)(4,19,24,14,34,29)(5,20,25,15,35,30)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $5$: $C_5$ $6$: $C_6$ $10$: $C_{10}$ $15$: $C_{15}$ $30$: $C_{30}$ $42$: $F_7$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: $C_5$
Degree 7: $F_7$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{35}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{15},1^{5}$ | $7$ | $2$ | $15$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)(11,31)(12,32)(13,33)(14,34)(15,35)(16,26)(17,27)(18,28)(19,29)(20,30)$ |
3A1 | $3^{10},1^{5}$ | $7$ | $3$ | $20$ | $( 1,11,16)( 2,12,17)( 3,13,18)( 4,14,19)( 5,15,20)( 6,31,26)( 7,32,27)( 8,33,28)( 9,34,29)(10,35,30)$ |
3A-1 | $3^{10},1^{5}$ | $7$ | $3$ | $20$ | $( 1,16,11)( 2,17,12)( 3,18,13)( 4,19,14)( 5,20,15)( 6,26,31)( 7,27,32)( 8,28,33)( 9,29,34)(10,30,35)$ |
5A1 | $5^{7}$ | $1$ | $5$ | $28$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)$ |
5A-1 | $5^{7}$ | $1$ | $5$ | $28$ | $( 1, 5, 4, 3, 2)( 6,10, 9, 8, 7)(11,15,14,13,12)(16,20,19,18,17)(21,25,24,23,22)(26,30,29,28,27)(31,35,34,33,32)$ |
5A2 | $5^{7}$ | $1$ | $5$ | $28$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)(11,13,15,12,14)(16,18,20,17,19)(21,23,25,22,24)(26,28,30,27,29)(31,33,35,32,34)$ |
5A-2 | $5^{7}$ | $1$ | $5$ | $28$ | $( 1, 4, 2, 5, 3)( 6, 9, 7,10, 8)(11,14,12,15,13)(16,19,17,20,18)(21,24,22,25,23)(26,29,27,30,28)(31,34,32,35,33)$ |
6A1 | $6^{5},1^{5}$ | $7$ | $6$ | $25$ | $( 1,26,11, 6,16,31)( 2,27,12, 7,17,32)( 3,28,13, 8,18,33)( 4,29,14, 9,19,34)( 5,30,15,10,20,35)$ |
6A-1 | $6^{5},1^{5}$ | $7$ | $6$ | $25$ | $( 1,31,16, 6,11,26)( 2,32,17, 7,12,27)( 3,33,18, 8,13,28)( 4,34,19, 9,14,29)( 5,35,20,10,15,30)$ |
7A | $7^{5}$ | $6$ | $7$ | $30$ | $( 1,11,21,31, 6,16,26)( 2,12,22,32, 7,17,27)( 3,13,23,33, 8,18,28)( 4,14,24,34, 9,19,29)( 5,15,25,35,10,20,30)$ |
10A1 | $10^{3},5$ | $7$ | $10$ | $31$ | $( 1, 9, 2,10, 3, 6, 4, 7, 5, 8)(11,34,12,35,13,31,14,32,15,33)(16,29,17,30,18,26,19,27,20,28)(21,24,22,25,23)$ |
10A-1 | $10^{3},5$ | $7$ | $10$ | $31$ | $( 1, 8, 5, 7, 4, 6, 3,10, 2, 9)(11,33,15,32,14,31,13,35,12,34)(16,28,20,27,19,26,18,30,17,29)(21,23,25,22,24)$ |
10A3 | $10^{3},5$ | $7$ | $10$ | $31$ | $( 1,10, 4, 8, 2, 6, 5, 9, 3, 7)(11,35,14,33,12,31,15,34,13,32)(16,30,19,28,17,26,20,29,18,27)(21,25,24,23,22)$ |
10A-3 | $10^{3},5$ | $7$ | $10$ | $31$ | $( 1, 7, 3, 9, 5, 6, 2, 8, 4,10)(11,32,13,34,15,31,12,33,14,35)(16,27,18,29,20,26,17,28,19,30)(21,22,23,24,25)$ |
15A1 | $15^{2},5$ | $7$ | $15$ | $32$ | $( 1,18,15, 2,19,11, 3,20,12, 4,16,13, 5,17,14)( 6,28,35, 7,29,31, 8,30,32, 9,26,33,10,27,34)(21,23,25,22,24)$ |
15A-1 | $15^{2},5$ | $7$ | $15$ | $32$ | $( 1,14,17, 5,13,16, 4,12,20, 3,11,19, 2,15,18)( 6,34,27,10,33,26, 9,32,30, 8,31,29, 7,35,28)(21,24,22,25,23)$ |
15A2 | $15^{2},5$ | $7$ | $15$ | $32$ | $( 1,15,19, 3,12,16, 5,14,18, 2,11,20, 4,13,17)( 6,35,29, 8,32,26,10,34,28, 7,31,30, 9,33,27)(21,25,24,23,22)$ |
15A-2 | $15^{2},5$ | $7$ | $15$ | $32$ | $( 1,17,13, 4,20,11, 2,18,14, 5,16,12, 3,19,15)( 6,27,33, 9,30,31, 7,28,34,10,26,32, 8,29,35)(21,22,23,24,25)$ |
15A4 | $15^{2},5$ | $7$ | $15$ | $32$ | $( 1,19,12, 5,18,11, 4,17,15, 3,16,14, 2,20,13)( 6,29,32,10,28,31, 9,27,35, 8,26,34, 7,30,33)(21,24,22,25,23)$ |
15A-4 | $15^{2},5$ | $7$ | $15$ | $32$ | $( 1,13,20, 2,14,16, 3,15,17, 4,11,18, 5,12,19)( 6,33,30, 7,34,26, 8,35,27, 9,31,28,10,32,29)(21,23,25,22,24)$ |
15A7 | $15^{2},5$ | $7$ | $15$ | $32$ | $( 1,20,14, 3,17,11, 5,19,13, 2,16,15, 4,18,12)( 6,30,34, 8,27,31,10,29,33, 7,26,35, 9,28,32)(21,25,24,23,22)$ |
15A-7 | $15^{2},5$ | $7$ | $15$ | $32$ | $( 1,12,18, 4,15,16, 2,13,19, 5,11,17, 3,14,20)( 6,32,28, 9,35,26, 7,33,29,10,31,27, 8,34,30)(21,22,23,24,25)$ |
30A1 | $30,5$ | $7$ | $30$ | $33$ | $( 1,32,18, 9,15,26, 2,33,19,10,11,27, 3,34,20, 6,12,28, 4,35,16, 7,13,29, 5,31,17, 8,14,30)(21,22,23,24,25)$ |
30A-1 | $30,5$ | $7$ | $30$ | $33$ | $( 1,20,24,13,32,26, 5,19,23,12,31,30, 4,18,22,11,35,29, 3,17,21,15,34,28, 2,16,25,14,33,27)( 6,10, 9, 8, 7)$ |
30A7 | $30,5$ | $7$ | $30$ | $33$ | $( 1,28,35,12,24,16, 3,30,32,14,21,18, 5,27,34,11,23,20, 2,29,31,13,25,17, 4,26,33,15,22,19)( 6, 8,10, 7, 9)$ |
30A-7 | $30,5$ | $7$ | $30$ | $33$ | $( 1,24,17,30, 8,11, 4,22,20,28, 6,14, 2,25,18,26, 9,12, 5,23,16,29, 7,15, 3,21,19,27,10,13)(31,34,32,35,33)$ |
30A11 | $30,5$ | $7$ | $30$ | $33$ | $( 1,32, 8,24,30,16, 2,33, 9,25,26,17, 3,34,10,21,27,18, 4,35, 6,22,28,19, 5,31, 7,23,29,20)(11,12,13,14,15)$ |
30A-11 | $30,5$ | $7$ | $30$ | $33$ | $( 1,20,29,23, 7,31, 5,19,28,22, 6,35, 4,18,27,21,10,34, 3,17,26,25, 9,33, 2,16,30,24, 8,32)(11,15,14,13,12)$ |
30A13 | $30,5$ | $7$ | $30$ | $33$ | $( 1,24,12,20,33, 6, 4,22,15,18,31, 9, 2,25,13,16,34, 7, 5,23,11,19,32,10, 3,21,14,17,35, 8)(26,29,27,30,28)$ |
30A-13 | $30,5$ | $7$ | $30$ | $33$ | $( 1,28,15, 7,19,31, 3,30,12, 9,16,33, 5,27,14, 6,18,35, 2,29,11, 8,20,32, 4,26,13,10,17,34)(21,23,25,22,24)$ |
35A1 | $35$ | $6$ | $35$ | $34$ | $( 1,32,28,24,20,11, 7, 3,34,30,21,17,13, 9, 5,31,27,23,19,15, 6, 2,33,29,25,16,12, 8, 4,35,26,22,18,14,10)$ |
35A-1 | $35$ | $6$ | $35$ | $34$ | $( 1,20,34,13,27, 6,25, 4,18,32,11,30, 9,23, 2,16,35,14,28, 7,21, 5,19,33,12,26,10,24, 3,17,31,15,29, 8,22)$ |
35A2 | $35$ | $6$ | $35$ | $34$ | $( 1,28,20, 7,34,21,13, 5,27,19, 6,33,25,12, 4,26,18,10,32,24,11, 3,30,17, 9,31,23,15, 2,29,16, 8,35,22,14)$ |
35A-2 | $35$ | $6$ | $35$ | $34$ | $( 1,24, 7,30,13,31,19, 2,25, 8,26,14,32,20, 3,21, 9,27,15,33,16, 4,22,10,28,11,34,17, 5,23, 6,29,12,35,18)$ |
Malle's constant $a(G)$: $1/15$
Character table
35 x 35 character table
Regular extensions
Data not computed