Properties

Label 34T44
Order \(16320\)
n \(34\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Learn more about

Group action invariants

Degree $n$ :  $34$
Transitive number $t$ :  $44$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,30,28,16,11,21,24,32)(2,29,27,15,12,22,23,31)(3,34,19,17,26,6,8,9)(4,33,20,18,25,5,7,10)(13,14), (1,30,10,7,24,32,18,34)(2,29,9,8,23,31,17,33)(3,4)(5,21,15,27,11,25,19,13)(6,22,16,28,12,26,20,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
4:  $C_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 17: $\PSL(2,16):C_4$

Low degree siblings

17T8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $68$ $2$ $( 1,10)( 2, 9)( 3, 8)( 4, 7)( 5,15)( 6,16)(19,31)(20,32)(23,30)(24,29)(25,34) (26,33)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1 $ $272$ $3$ $( 1,26,19)( 2,25,20)( 3,24, 5)( 4,23, 6)( 7,30,16)( 8,29,15)( 9,34,32) (10,33,31)(11,18,14)(12,17,13)$
$ 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2 $ $680$ $4$ $( 1,30,10,23)( 2,29, 9,24)( 3,20, 8,32)( 4,19, 7,31)( 5,25,15,34)( 6,26,16,33) (11,12)(13,14)(17,18)(21,28)(22,27)$
$ 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2 $ $680$ $4$ $( 1,23,10,30)( 2,24, 9,29)( 3,32, 8,20)( 4,31, 7,19)( 5,34,15,25)( 6,33,16,26) (11,12)(13,14)(17,18)(21,28)(22,27)$
$ 6, 6, 6, 6, 3, 3, 1, 1, 1, 1 $ $1360$ $6$ $( 1,31,26,10,19,33)( 2,32,25, 9,20,34)( 3,15,24, 8, 5,29)( 4,16,23, 7, 6,30) (11,14,18)(12,13,17)$
$ 12, 12, 6, 2, 2 $ $1360$ $12$ $( 1, 6,31,30,26, 4,10,16,19,23,33, 7)( 2, 5,32,29,25, 3, 9,15,20,24,34, 8) (11,17,14,12,18,13)(21,28)(22,27)$
$ 12, 12, 6, 2, 2 $ $1360$ $12$ $( 1,16,31,23,26, 7,10, 6,19,30,33, 4)( 2,15,32,24,25, 8, 9, 5,20,29,34, 3) (11,17,14,12,18,13)(21,28)(22,27)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ $255$ $2$ $( 1,19)( 2,20)( 3,10)( 4, 9)( 5,33)( 6,34)( 7,13)( 8,14)(11,15)(12,16)(17,30) (18,29)(21,27)(22,28)(23,32)(24,31)$
$ 4, 4, 4, 4, 4, 4, 4, 4, 1, 1 $ $1020$ $4$ $( 1,15,19,11)( 2,16,20,12)( 3,29,10,18)( 4,30, 9,17)( 5,22,33,28)( 6,21,34,27) ( 7,23,13,32)( 8,24,14,31)$
$ 8, 8, 8, 8, 2 $ $2040$ $8$ $( 1, 9,15,17,19, 4,11,30)( 2,10,16,18,20, 3,12,29)( 5,13,22,32,33, 7,28,23) ( 6,14,21,31,34, 8,27,24)(25,26)$
$ 8, 8, 8, 8, 2 $ $2040$ $8$ $( 1,30,11, 4,19,17,15, 9)( 2,29,12, 3,20,18,16,10)( 5,23,28, 7,33,32,22,13) ( 6,24,27, 8,34,31,21,14)(25,26)$
$ 5, 5, 5, 5, 5, 5, 1, 1, 1, 1 $ $544$ $5$ $( 1,10,29,14,24)( 2, 9,30,13,23)( 3,19,31, 8,18)( 4,20,32, 7,17) ( 5,26,33,15,11)( 6,25,34,16,12)$
$ 10, 10, 5, 5, 2, 2 $ $1632$ $10$ $( 1, 3,14, 8,10,19,24,18,29,31)( 2, 4,13, 7, 9,20,23,17,30,32)( 5,11,15,33,26) ( 6,12,16,34,25)(21,27)(22,28)$
$ 17, 17 $ $960$ $17$ $( 1,19, 8, 3, 5,28,29,18,14,24,11,10,26,33,31,15,22)( 2,20, 7, 4, 6,27,30,17, 13,23,12, 9,25,34,32,16,21)$
$ 17, 17 $ $960$ $17$ $( 1,29,26,19,18,33, 8,14,31, 3,24,15, 5,11,22,28,10)( 2,30,25,20,17,34, 7,13, 32, 4,23,16, 6,12,21,27, 9)$
$ 15, 15, 1, 1, 1, 1 $ $1088$ $15$ $( 1, 3,24,18, 8,15,14,22,11, 5,26,28,19,33,10)( 2, 4,23,17, 7,16,13,21,12, 6, 25,27,20,34, 9)$

Group invariants

Order:  $16320=2^{6} \cdot 3 \cdot 5 \cdot 17$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table:   
      2  6  4  1   1  6  4  3  3  3  3  2  2   2   2   .   .   .
      3  1  1  1   .  .  .  .  .  1  1  1  1   1   1   1   .   .
      5  1  1  1   1  .  .  .  .  .  .  1  .   .   .   1   .   .
     17  1  .  .   .  .  .  .  .  .  .  .  .   .   .   .   1   1

        1a 2a 5a 10a 2b 4a 8a 8b 4b 4c 3a 6a 12a 12b 15a 17a 17b
     2P 1a 1a 5a  5a 1a 2b 4a 4a 2a 2a 3a 3a  6a  6a 15a 17a 17b
     3P 1a 2a 5a 10a 2b 4a 8b 8a 4c 4b 1a 2a  4b  4c  5a 17b 17a
     5P 1a 2a 1a  2a 2b 4a 8a 8b 4b 4c 3a 6a 12a 12b  3a 17b 17a
     7P 1a 2a 5a 10a 2b 4a 8b 8a 4c 4b 3a 6a 12b 12a 15a 17b 17a
    11P 1a 2a 5a 10a 2b 4a 8b 8a 4c 4b 3a 6a 12b 12a 15a 17b 17a
    13P 1a 2a 5a 10a 2b 4a 8a 8b 4b 4c 3a 6a 12a 12b 15a 17a 17b
    17P 1a 2a 5a 10a 2b 4a 8a 8b 4b 4c 3a 6a 12a 12b 15a  1a  1a

X.1      1  1  1   1  1  1  1  1  1  1  1  1   1   1   1   1   1
X.2      1  1  1   1  1  1 -1 -1 -1 -1  1  1  -1  -1   1   1   1
X.3      1 -1  1  -1  1 -1  A -A  A -A  1 -1  -A   A   1   1   1
X.4      1 -1  1  -1  1 -1 -A  A -A  A  1 -1   A  -A   1   1   1
X.5     16  4  1  -1  .  .  .  . -2 -2  1  1   1   1   1  -1  -1
X.6     16  4  1  -1  .  .  .  .  2  2  1  1  -1  -1   1  -1  -1
X.7     16 -4  1   1  .  .  .  .  B -B  1 -1   A  -A   1  -1  -1
X.8     16 -4  1   1  .  .  .  . -B  B  1 -1  -A   A   1  -1  -1
X.9     17  5  2   .  1  1 -1 -1  1  1 -1 -1   1   1  -1   .   .
X.10    17  5  2   .  1  1  1  1 -1 -1 -1 -1  -1  -1  -1   .   .
X.11    17 -5  2   .  1 -1  A -A -A  A -1  1   A  -A  -1   .   .
X.12    17 -5  2   .  1 -1 -A  A  A -A -1  1  -A   A  -1   .   .
X.13    34 -6 -1  -1  2  2  .  .  .  .  4  .   .   .  -1   .   .
X.14    34  6 -1   1  2 -2  .  .  .  .  4  .   .   .  -1   .   .
X.15    60  .  .   . -4  .  .  .  .  .  .  .   .   .   .   C  *C
X.16    60  .  .   . -4  .  .  .  .  .  .  .   .   .   .  *C   C
X.17    68  . -2   .  4  .  .  .  .  . -4  .   .   .   1   .   .

A = -E(4)
  = -Sqrt(-1) = -i
B = -2*E(4)
  = -2*Sqrt(-1) = -2i
C = -E(17)-E(17)^2-E(17)^4-E(17)^8-E(17)^9-E(17)^13-E(17)^15-E(17)^16
  = (1-Sqrt(17))/2 = -b17