Label 33T50
Order \(99825\)
n \(33\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Learn more about

Group action invariants

Degree $n$ :  $33$
Transitive number $t$ :  $50$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,28,21,6,27,13,11,26,16,5,25,19,10,24,22,4,23,14,9,33,17,3,32,20,8,31,12,2,30,15,7,29,18), (1,12,32,2,16,29,3,20,26,4,13,23,5,17,31,6,21,28,7,14,25,8,18,33,9,22,30,10,15,27,11,19,24)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
3:  $C_3$
75:  $C_5^2 : C_3$

Resolvents shown for degrees $\leq 47$


Degree 3: $C_3$

Degree 11: None

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 65 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $99825=3 \cdot 5^{2} \cdot 11^{3}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.