Properties

Label 32T24
Order \(32\)
n \(32\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes
Group: $C_2^2\wr C_2$

Learn more about

Group action invariants

Degree $n$ :  $32$
Transitive number $t$ :  $24$
Group :  $C_2^2\wr C_2$
Parity:  $1$
Primitive:  No
Nilpotency class:  $2$
Generators:  (1,6)(2,5)(3,7)(4,8)(9,29)(10,30)(11,32)(12,31)(13,24)(14,23)(15,22)(16,21)(17,28)(18,27)(19,25)(20,26), (1,20)(2,19)(3,17)(4,18)(5,24)(6,23)(7,21)(8,22)(9,27)(10,28)(11,26)(12,25)(13,31)(14,32)(15,29)(16,30), (1,25,7,15)(2,26,8,16)(3,27,6,13)(4,28,5,14)(9,17,31,23)(10,18,32,24)(11,19,30,22)(12,20,29,21)
$|\Aut(F/K)|$:  $32$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 3

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 7

Degree 4: $C_2^2$ x 7, $D_{4}$ x 12

Degree 8: $C_2^3$, $D_4$ x 6, $D_4\times C_2$ x 12, $C_2^2 \wr C_2$ x 8

Degree 16: $D_4\times C_2$ x 3, 16T39 x 6, 16T46

Low degree siblings

8T18 x 8, 16T39 x 6, 16T46

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,21)(14,22)(15,23)(16,24)(17,25) (18,26)(19,28)(20,27)(29,30)(31,32)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,12)(10,11)(13,18)(14,17)(15,19)(16,20)(21,26) (22,25)(23,28)(24,27)(29,31)(30,32)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,11)(10,12)(13,26)(14,25)(15,28)(16,27)(17,22) (18,21)(19,23)(20,24)(29,32)(30,31)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 6)( 2, 5)( 3, 7)( 4, 8)( 9,29)(10,30)(11,32)(12,31)(13,24)(14,23)(15,22) (16,21)(17,28)(18,27)(19,25)(20,26)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,31)(10,32)(11,30)(12,29)(13,27)(14,28)(15,25) (16,26)(17,23)(18,24)(19,22)(20,21)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,32)(10,31)(11,29)(12,30)(13,20)(14,19)(15,17) (16,18)(21,27)(22,28)(23,25)(24,26)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,29)( 6,30)( 7,32)( 8,31)(13,22)(14,21)(15,24) (16,23)(17,26)(18,25)(19,27)(20,28)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1,12)( 2,11)( 3, 9)( 4,10)( 5,32)( 6,31)( 7,29)( 8,30)(13,17)(14,18)(15,20) (16,19)(21,25)(22,26)(23,27)(24,28)$
$ 4, 4, 4, 4, 4, 4, 4, 4 $ $4$ $4$ $( 1,13,10,22)( 2,14, 9,21)( 3,15,11,24)( 4,16,12,23)( 5,26,29,17)( 6,25,30,18) ( 7,27,32,19)( 8,28,31,20)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1,14)( 2,13)( 3,16)( 4,15)( 5,25)( 6,26)( 7,28)( 8,27)( 9,22)(10,21)(11,23) (12,24)(17,30)(18,29)(19,31)(20,32)$
$ 4, 4, 4, 4, 4, 4, 4, 4 $ $4$ $4$ $( 1,15, 7,25)( 2,16, 8,26)( 3,13, 6,27)( 4,14, 5,28)( 9,23,31,17)(10,24,32,18) (11,22,30,19)(12,21,29,20)$
$ 4, 4, 4, 4, 4, 4, 4, 4 $ $4$ $4$ $( 1,16,32,17)( 2,15,31,18)( 3,14,30,20)( 4,13,29,19)( 5,27,12,22)( 6,28,11,21) ( 7,26,10,23)( 8,25, 9,24)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1,32)( 2,31)( 3,30)( 4,29)( 5,12)( 6,11)( 7,10)( 8, 9)(13,19)(14,20)(15,18) (16,17)(21,28)(22,27)(23,26)(24,25)$

Group invariants

Order:  $32=2^{5}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [32, 27]
Character table:   
      2  5  4  4  4  4  5  4  5  4  3  3  3  3  5

        1a 2a 2b 2c 2d 2e 2f 2g 2h 4a 2i 4b 4c 2j
     2P 1a 1a 1a 1a 1a 1a 1a 1a 1a 2g 1a 2e 2j 1a
     3P 1a 2a 2b 2c 2d 2e 2f 2g 2h 4a 2i 4b 4c 2j

X.1      1  1  1  1  1  1  1  1  1  1  1  1  1  1
X.2      1 -1 -1  1 -1  1 -1  1  1 -1  1  1 -1  1
X.3      1 -1 -1  1 -1  1 -1  1  1  1 -1 -1  1  1
X.4      1 -1  1 -1  1  1 -1  1 -1 -1  1 -1  1  1
X.5      1 -1  1 -1  1  1 -1  1 -1  1 -1  1 -1  1
X.6      1  1 -1 -1 -1  1  1  1 -1 -1 -1  1  1  1
X.7      1  1 -1 -1 -1  1  1  1 -1  1  1 -1 -1  1
X.8      1  1  1  1  1  1  1  1  1 -1 -1 -1 -1  1
X.9      2  2  .  .  . -2 -2  2  .  .  .  .  . -2
X.10     2 -2  .  .  . -2  2  2  .  .  .  .  . -2
X.11     2  . -2  .  2 -2  . -2  .  .  .  .  .  2
X.12     2  .  . -2  .  2  . -2  2  .  .  .  . -2
X.13     2  .  .  2  .  2  . -2 -2  .  .  .  . -2
X.14     2  .  2  . -2 -2  . -2  .  .  .  .  .  2