Properties

Label 32T2
Order \(32\)
n \(32\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes
Group: $OD_{16}:C_2$

Learn more about

Group action invariants

Degree $n$ :  $32$
Transitive number $t$ :  $2$
Group :  $OD_{16}:C_2$
Parity:  $1$
Primitive:  No
Nilpotency class:  $2$
Generators:  (1,12,4,9)(2,11,3,10)(5,16,7,14)(6,15,8,13)(17,28,20,25)(18,27,19,26)(21,31,23,29)(22,32,24,30), (1,31)(2,32)(3,30)(4,29)(5,20)(6,19)(7,17)(8,18)(9,23)(10,24)(11,22)(12,21)(13,26)(14,25)(15,27)(16,28), (1,20,10,26,4,17,11,27)(2,19,9,25,3,18,12,28)(5,22,13,31,7,24,15,29)(6,21,14,32,8,23,16,30)
$|\Aut(F/K)|$:  $32$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $C_4\times C_2$ x 6, $C_2^3$
16:  $C_4\times C_2^2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 7

Degree 4: $C_4$ x 4, $C_2^2$ x 7

Degree 8: $C_4\times C_2$ x 6, $C_2^3$

Degree 16: $C_4\times C_2^2$, $(C_8:C_2):C_2$ x 3

Low degree siblings

16T16 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,19)(18,20)(21,24) (22,23)(25,27)(26,28)(29,32)(30,31)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,12)(10,11)(13,15)(14,16)(17,20)(18,19)(21,23) (22,24)(25,28)(26,27)(29,31)(30,32)$
$ 8, 8, 8, 8 $ $2$ $8$ $( 1, 5,11,15, 4, 7,10,13)( 2, 6,12,16, 3, 8, 9,14)(17,22,26,29,20,24,27,31) (18,21,25,30,19,23,28,32)$
$ 8, 8, 8, 8 $ $1$ $8$ $( 1, 6,11,16, 4, 8,10,14)( 2, 5,12,15, 3, 7, 9,13)(17,23,26,32,20,21,27,30) (18,24,25,31,19,22,28,29)$
$ 8, 8, 8, 8 $ $1$ $8$ $( 1, 8,11,14, 4, 6,10,16)( 2, 7,12,13, 3, 5, 9,15)(17,21,26,30,20,23,27,32) (18,22,25,29,19,24,28,31)$
$ 4, 4, 4, 4, 4, 4, 4, 4 $ $2$ $4$ $( 1, 9, 4,12)( 2,10, 3,11)( 5,14, 7,16)( 6,13, 8,15)(17,25,20,28)(18,26,19,27) (21,29,23,31)(22,30,24,32)$
$ 4, 4, 4, 4, 4, 4, 4, 4 $ $1$ $4$ $( 1,10, 4,11)( 2, 9, 3,12)( 5,13, 7,15)( 6,14, 8,16)(17,27,20,26)(18,28,19,25) (21,32,23,30)(22,31,24,29)$
$ 4, 4, 4, 4, 4, 4, 4, 4 $ $1$ $4$ $( 1,11, 4,10)( 2,12, 3, 9)( 5,15, 7,13)( 6,16, 8,14)(17,26,20,27)(18,25,19,28) (21,30,23,32)(22,29,24,31)$
$ 8, 8, 8, 8 $ $2$ $8$ $( 1,13,10, 7, 4,15,11, 5)( 2,14, 9, 8, 3,16,12, 6)(17,31,27,24,20,29,26,22) (18,32,28,23,19,30,25,21)$
$ 8, 8, 8, 8 $ $1$ $8$ $( 1,14,10, 8, 4,16,11, 6)( 2,13, 9, 7, 3,15,12, 5)(17,30,27,21,20,32,26,23) (18,29,28,22,19,31,25,24)$
$ 8, 8, 8, 8 $ $1$ $8$ $( 1,16,10, 6, 4,14,11, 8)( 2,15, 9, 5, 3,13,12, 7)(17,32,27,23,20,30,26,21) (18,31,28,24,19,29,25,22)$
$ 8, 8, 8, 8 $ $2$ $8$ $( 1,17,10,27, 4,20,11,26)( 2,18, 9,28, 3,19,12,25)( 5,24,13,29, 7,22,15,31) ( 6,23,14,30, 8,21,16,32)$
$ 8, 8, 8, 8 $ $2$ $8$ $( 1,18,11,25, 4,19,10,28)( 2,17,12,26, 3,20, 9,27)( 5,23,15,32, 7,21,13,30) ( 6,24,16,31, 8,22,14,29)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1,21)( 2,22)( 3,24)( 4,23)( 5,28)( 6,27)( 7,25)( 8,26)( 9,31)(10,32)(11,30) (12,29)(13,19)(14,20)(15,18)(16,17)$
$ 4, 4, 4, 4, 4, 4, 4, 4 $ $2$ $4$ $( 1,22, 4,24)( 2,21, 3,23)( 5,27, 7,26)( 6,28, 8,25)( 9,32,12,30)(10,31,11,29) (13,20,15,17)(14,19,16,18)$
$ 8, 8, 8, 8 $ $2$ $8$ $( 1,25,10,18, 4,28,11,19)( 2,26, 9,17, 3,27,12,20)( 5,32,13,23, 7,30,15,21) ( 6,31,14,24, 8,29,16,22)$
$ 8, 8, 8, 8 $ $2$ $8$ $( 1,26,11,20, 4,27,10,17)( 2,25,12,19, 3,28, 9,18)( 5,31,15,22, 7,29,13,24) ( 6,32,16,21, 8,30,14,23)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1,29)( 2,30)( 3,32)( 4,31)( 5,17)( 6,18)( 7,20)( 8,19)( 9,21)(10,22)(11,24) (12,23)(13,27)(14,28)(15,26)(16,25)$
$ 4, 4, 4, 4, 4, 4, 4, 4 $ $2$ $4$ $( 1,30, 4,32)( 2,29, 3,31)( 5,18, 7,19)( 6,17, 8,20)( 9,22,12,24)(10,21,11,23) (13,28,15,25)(14,27,16,26)$

Group invariants

Order:  $32=2^{5}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [32, 38]
Character table:   
      2  5  4  5  4   5   5  4  5  5  4   5   5  4  4  4  4  4  4  4  4

        1a 2a 2b 8a  8b  8c 4a 4b 4c 8d  8e  8f 8g 8h 2c 4d 8i 8j 2d 4e
     2P 1a 1a 1a 4c  4c  4c 2b 2b 2b 4b  4b  4b 4b 4c 1a 2b 4b 4c 1a 2b
     3P 1a 2a 2b 8d  8f  8e 4a 4c 4b 8a  8c  8b 8j 8i 2c 4d 8h 8g 2d 4e
     5P 1a 2a 2b 8a  8c  8b 4a 4b 4c 8d  8f  8e 8g 8h 2c 4d 8i 8j 2d 4e
     7P 1a 2a 2b 8d  8e  8f 4a 4c 4b 8a  8b  8c 8j 8i 2c 4d 8h 8g 2d 4e

X.1      1  1  1  1   1   1  1  1  1  1   1   1  1  1  1  1  1  1  1  1
X.2      1 -1  1 -1   1   1 -1  1  1 -1   1   1 -1  1 -1  1  1 -1  1 -1
X.3      1 -1  1 -1   1   1 -1  1  1 -1   1   1  1 -1  1 -1 -1  1 -1  1
X.4      1 -1  1  1  -1  -1 -1  1  1  1  -1  -1 -1  1  1 -1  1 -1 -1  1
X.5      1 -1  1  1  -1  -1 -1  1  1  1  -1  -1  1 -1 -1  1 -1  1  1 -1
X.6      1  1  1 -1  -1  -1  1  1  1 -1  -1  -1 -1 -1  1  1 -1 -1  1  1
X.7      1  1  1 -1  -1  -1  1  1  1 -1  -1  -1  1  1 -1 -1  1  1 -1 -1
X.8      1  1  1  1   1   1  1  1  1  1   1   1 -1 -1 -1 -1 -1 -1 -1 -1
X.9      1 -1  1  A  -A  -A  1 -1 -1 -A   A   A  A -A  1 -1  A -A  1 -1
X.10     1 -1  1 -A   A   A  1 -1 -1  A  -A  -A -A  A  1 -1 -A  A  1 -1
X.11     1 -1  1  A  -A  -A  1 -1 -1 -A   A   A -A  A -1  1 -A  A -1  1
X.12     1 -1  1 -A   A   A  1 -1 -1  A  -A  -A  A -A -1  1  A -A -1  1
X.13     1  1  1  A   A   A -1 -1 -1 -A  -A  -A  A  A -1 -1 -A -A  1  1
X.14     1  1  1 -A  -A  -A -1 -1 -1  A   A   A -A -A -1 -1  A  A  1  1
X.15     1  1  1  A   A   A -1 -1 -1 -A  -A  -A -A -A  1  1  A  A -1 -1
X.16     1  1  1 -A  -A  -A -1 -1 -1  A   A   A  A  A  1  1 -A -A -1 -1
X.17     2  . -2  .   B  -B  .  C -C  .  /B -/B  .  .  .  .  .  .  .  .
X.18     2  . -2  . -/B  /B  . -C  C  .  -B   B  .  .  .  .  .  .  .  .
X.19     2  . -2  .  /B -/B  . -C  C  .   B  -B  .  .  .  .  .  .  .  .
X.20     2  . -2  .  -B   B  .  C -C  . -/B  /B  .  .  .  .  .  .  .  .

A = -E(4)
  = -Sqrt(-1) = -i
B = -2*E(8)
C = -2*E(4)
  = -2*Sqrt(-1) = -2i