Properties

Label 27T7
Order \(54\)
n \(27\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $C_3^3:C_2$

Learn more about

Group action invariants

Degree $n$ :  $27$
Transitive number $t$ :  $7$
Group :  $C_3^3:C_2$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,21,10)(2,19,11)(3,20,12)(4,23,15)(5,24,13)(6,22,14)(7,27,17)(8,25,18)(9,26,16), (2,3)(4,26)(5,25)(6,27)(7,22)(8,24)(9,23)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,27,6)(2,25,4)(3,26,5)(7,14,10)(8,15,11)(9,13,12)(16,24,20)(17,22,21)(18,23,19)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
6:  $S_3$ x 13
18:  $C_3^2:C_2$ x 13

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: $S_3$ x 13

Degree 9: $C_3^2:C_2$ x 13

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 $ $27$ $2$ $( 2, 3)( 4,26)( 5,25)( 6,27)( 7,22)( 8,24)( 9,23)(10,21)(11,20)(12,19)(13,18) (14,17)(15,16)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $2$ $3$ $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21) (22,23,24)(25,26,27)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $2$ $3$ $( 1, 4,26)( 2, 5,27)( 3, 6,25)( 7,11,13)( 8,12,14)( 9,10,15)(16,21,23) (17,19,24)(18,20,22)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $2$ $3$ $( 1, 5,25)( 2, 6,26)( 3, 4,27)( 7,12,15)( 8,10,13)( 9,11,14)(16,19,22) (17,20,23)(18,21,24)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $2$ $3$ $( 1, 6,27)( 2, 4,25)( 3, 5,26)( 7,10,14)( 8,11,15)( 9,12,13)(16,20,24) (17,21,22)(18,19,23)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $2$ $3$ $( 1, 7,22)( 2, 8,23)( 3, 9,24)( 4,11,18)( 5,12,16)( 6,10,17)(13,20,26) (14,21,27)(15,19,25)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $2$ $3$ $( 1, 8,24)( 2, 9,22)( 3, 7,23)( 4,12,17)( 5,10,18)( 6,11,16)(13,21,25) (14,19,26)(15,20,27)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $2$ $3$ $( 1, 9,23)( 2, 7,24)( 3, 8,22)( 4,10,16)( 5,11,17)( 6,12,18)(13,19,27) (14,20,25)(15,21,26)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $2$ $3$ $( 1,10,21)( 2,11,19)( 3,12,20)( 4,15,23)( 5,13,24)( 6,14,22)( 7,17,27) ( 8,18,25)( 9,16,26)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $2$ $3$ $( 1,11,20)( 2,12,21)( 3,10,19)( 4,13,22)( 5,14,23)( 6,15,24)( 7,18,26) ( 8,16,27)( 9,17,25)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $2$ $3$ $( 1,12,19)( 2,10,20)( 3,11,21)( 4,14,24)( 5,15,22)( 6,13,23)( 7,16,25) ( 8,17,26)( 9,18,27)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $2$ $3$ $( 1,13,18)( 2,14,16)( 3,15,17)( 4, 7,20)( 5, 8,21)( 6, 9,19)(10,24,25) (11,22,26)(12,23,27)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $2$ $3$ $( 1,14,17)( 2,15,18)( 3,13,16)( 4, 8,19)( 5, 9,20)( 6, 7,21)(10,22,27) (11,23,25)(12,24,26)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $2$ $3$ $( 1,15,16)( 2,13,17)( 3,14,18)( 4, 9,21)( 5, 7,19)( 6, 8,20)(10,23,26) (11,24,27)(12,22,25)$

Group invariants

Order:  $54=2 \cdot 3^{3}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [54, 14]
Character table:   
      2  1  1  .  .  .  .  .  .  .  .  .  .  .  .  .
      3  3  .  3  3  3  3  3  3  3  3  3  3  3  3  3

        1a 2a 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j 3k 3l 3m
     2P 1a 1a 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j 3k 3l 3m
     3P 1a 2a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a

X.1      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
X.2      1 -1  1  1  1  1  1  1  1  1  1  1  1  1  1
X.3      2  .  2  2  2  2 -1 -1 -1 -1 -1 -1 -1 -1 -1
X.4      2  .  2 -1 -1 -1  2  2  2 -1 -1 -1 -1 -1 -1
X.5      2  . -1  2 -1 -1  2 -1 -1 -1  2 -1  2 -1 -1
X.6      2  . -1 -1 -1  2  2 -1 -1  2 -1 -1 -1  2 -1
X.7      2  . -1 -1  2 -1  2 -1 -1 -1 -1  2 -1 -1  2
X.8      2  . -1  2 -1 -1 -1 -1  2  2 -1 -1 -1 -1  2
X.9      2  . -1  2 -1 -1 -1  2 -1 -1 -1  2 -1  2 -1
X.10     2  .  2 -1 -1 -1 -1 -1 -1 -1 -1 -1  2  2  2
X.11     2  .  2 -1 -1 -1 -1 -1 -1  2  2  2 -1 -1 -1
X.12     2  . -1 -1 -1  2 -1 -1  2 -1 -1  2  2 -1 -1
X.13     2  . -1 -1 -1  2 -1  2 -1 -1  2 -1 -1 -1  2
X.14     2  . -1 -1  2 -1 -1 -1  2 -1  2 -1 -1  2 -1
X.15     2  . -1 -1  2 -1 -1  2 -1  2 -1 -1  2 -1 -1