Show commands:
Magma
magma: G := TransitiveGroup(26, 6);
Group invariants
Abstract group: | $C_{13}:C_6$ | magma: IdentifyGroup(G);
| |
Order: | $78=2 \cdot 3 \cdot 13$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $26$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $6$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,7,6,24,17,19)(2,8,5,23,18,20)(3,15,12,21,10,13)(4,16,11,22,9,14)(25,26)$, $(1,4,6,8,9,11,13,15,17,20,21,23,25)(2,3,5,7,10,12,14,16,18,19,22,24,26)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: $C_{13}:C_6$
Low degree siblings
13T5, 39T6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{13}$ | $13$ | $2$ | $13$ | $( 1,19)( 2,20)( 3,17)( 4,18)( 5,15)( 6,16)( 7,13)( 8,14)( 9,12)(10,11)(21,26)(22,25)(23,24)$ |
3A1 | $3^{8},1^{2}$ | $13$ | $3$ | $16$ | $( 1, 8, 9)( 2, 7,10)( 3,26,16)( 4,25,15)( 5,18,22)( 6,17,21)(11,20,13)(12,19,14)$ |
3A-1 | $3^{8},1^{2}$ | $13$ | $3$ | $16$ | $( 1, 9, 8)( 2,10, 7)( 3,16,26)( 4,15,25)( 5,22,18)( 6,21,17)(11,13,20)(12,14,19)$ |
6A1 | $6^{4},2$ | $13$ | $6$ | $21$ | $( 1,12, 8,19, 9,14)( 2,11, 7,20,10,13)( 3, 6,26,17,16,21)( 4, 5,25,18,15,22)(23,24)$ |
6A-1 | $6^{4},2$ | $13$ | $6$ | $21$ | $( 1,14, 9,19, 8,12)( 2,13,10,20, 7,11)( 3,21,16,17,26, 6)( 4,22,15,18,25, 5)(23,24)$ |
13A1 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 9,17,25, 8,15,23, 6,13,21, 4,11,20)( 2,10,18,26, 7,16,24, 5,14,22, 3,12,19)$ |
13A2 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1,17, 8,23,13, 4,20, 9,25,15, 6,21,11)( 2,18, 7,24,14, 3,19,10,26,16, 5,22,12)$ |
Malle's constant $a(G)$: $1/13$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 13A1 | 13A2 | ||
Size | 1 | 13 | 13 | 13 | 13 | 13 | 6 | 6 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 13A2 | 13A1 | |
3 P | 1A | 2A | 1A | 1A | 2A | 2A | 13A1 | 13A2 | |
13 P | 1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 1A | 1A | |
Type | |||||||||
78.1.1a | R | ||||||||
78.1.1b | R | ||||||||
78.1.1c1 | C | ||||||||
78.1.1c2 | C | ||||||||
78.1.1d1 | C | ||||||||
78.1.1d2 | C | ||||||||
78.1.6a1 | R | ||||||||
78.1.6a2 | R |
magma: CharacterTable(G);