Properties

Label 26T6
Degree $26$
Order $78$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_{13}:C_6$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(26, 6);
 

Group invariants

Abstract group:  $C_{13}:C_6$
magma: IdentifyGroup(G);
 
Order:  $78=2 \cdot 3 \cdot 13$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
magma: NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $26$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $6$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,7,6,24,17,19)(2,8,5,23,18,20)(3,15,12,21,10,13)(4,16,11,22,9,14)(25,26)$, $(1,4,6,8,9,11,13,15,17,20,21,23,25)(2,3,5,7,10,12,14,16,18,19,22,24,26)$
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$3$:  $C_3$
$6$:  $C_6$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 13: $C_{13}:C_6$

Low degree siblings

13T5, 39T6

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{26}$ $1$ $1$ $0$ $()$
2A $2^{13}$ $13$ $2$ $13$ $( 1,19)( 2,20)( 3,17)( 4,18)( 5,15)( 6,16)( 7,13)( 8,14)( 9,12)(10,11)(21,26)(22,25)(23,24)$
3A1 $3^{8},1^{2}$ $13$ $3$ $16$ $( 1, 8, 9)( 2, 7,10)( 3,26,16)( 4,25,15)( 5,18,22)( 6,17,21)(11,20,13)(12,19,14)$
3A-1 $3^{8},1^{2}$ $13$ $3$ $16$ $( 1, 9, 8)( 2,10, 7)( 3,16,26)( 4,15,25)( 5,22,18)( 6,21,17)(11,13,20)(12,14,19)$
6A1 $6^{4},2$ $13$ $6$ $21$ $( 1,12, 8,19, 9,14)( 2,11, 7,20,10,13)( 3, 6,26,17,16,21)( 4, 5,25,18,15,22)(23,24)$
6A-1 $6^{4},2$ $13$ $6$ $21$ $( 1,14, 9,19, 8,12)( 2,13,10,20, 7,11)( 3,21,16,17,26, 6)( 4,22,15,18,25, 5)(23,24)$
13A1 $13^{2}$ $6$ $13$ $24$ $( 1, 9,17,25, 8,15,23, 6,13,21, 4,11,20)( 2,10,18,26, 7,16,24, 5,14,22, 3,12,19)$
13A2 $13^{2}$ $6$ $13$ $24$ $( 1,17, 8,23,13, 4,20, 9,25,15, 6,21,11)( 2,18, 7,24,14, 3,19,10,26,16, 5,22,12)$

Malle's constant $a(G)$:     $1/13$

magma: ConjugacyClasses(G);
 

Character table

1A 2A 3A1 3A-1 6A1 6A-1 13A1 13A2
Size 1 13 13 13 13 13 6 6
2 P 1A 1A 3A-1 3A1 3A1 3A-1 13A2 13A1
3 P 1A 2A 1A 1A 2A 2A 13A1 13A2
13 P 1A 2A 3A1 3A-1 6A1 6A-1 1A 1A
Type
78.1.1a R 1 1 1 1 1 1 1 1
78.1.1b R 1 1 1 1 1 1 1 1
78.1.1c1 C 1 1 ζ31 ζ3 ζ3 ζ31 1 1
78.1.1c2 C 1 1 ζ3 ζ31 ζ31 ζ3 1 1
78.1.1d1 C 1 1 ζ31 ζ3 ζ3 ζ31 1 1
78.1.1d2 C 1 1 ζ3 ζ31 ζ31 ζ3 1 1
78.1.6a1 R 6 0 0 0 0 0 ζ136+ζ135+ζ132+ζ132+ζ135+ζ136 ζ136ζ135ζ1321ζ132ζ135ζ136
78.1.6a2 R 6 0 0 0 0 0 ζ136ζ135ζ1321ζ132ζ135ζ136 ζ136+ζ135+ζ132+ζ132+ζ135+ζ136

magma: CharacterTable(G);