Properties

Label 26T39
Order \(5616\)
n \(26\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No
Group: $\PSL(3,3)$

Learn more about

Group action invariants

Degree $n$ :  $26$
Transitive number $t$ :  $39$
Group :  $\PSL(3,3)$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2)(3,23)(4,24)(5,6)(7,21)(8,22)(9,11)(10,12)(13,19)(14,20)(17,18)(25,26), (1,4,5,8,9,11,13,16,18,20,21,24,25)(2,3,6,7,10,12,14,15,17,19,22,23,26)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

None

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 13: $\PSL(3,3)$

Low degree siblings

13T7 x 2, 26T39, 39T43 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has exactly one arithmetically equivalent field.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ $117$ $2$ $( 1,13)( 2,14)( 3,25)( 4,26)( 5,11)( 6,12)( 7, 8)( 9,20)(10,19)(15,16)(17,18) (21,22)$
$ 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ $104$ $3$ $( 1, 3,20)( 2, 4,19)( 9,13,25)(10,14,26)(15,17,21)(16,18,22)$
$ 6, 6, 6, 2, 2, 2, 1, 1 $ $936$ $6$ $( 1, 9, 3,13,20,25)( 2,10, 4,14,19,26)( 5,11)( 6,12)( 7, 8)(15,22,17,16,21,18)$
$ 13, 13 $ $432$ $13$ $( 1,24,25,19,13, 3,22,16,12, 5,18,10, 8)( 2,23,26,20,14, 4,21,15,11, 6,17, 9, 7)$
$ 13, 13 $ $432$ $13$ $( 1,12,19,10,22,24, 5,13, 8,16,25,18, 3)( 2,11,20, 9,21,23, 6,14, 7,15,26,17, 4)$
$ 13, 13 $ $432$ $13$ $( 1, 8,10,18, 5,12,16,22, 3,13,19,25,24)( 2, 7, 9,17, 6,11,15,21, 4,14,20,26, 23)$
$ 13, 13 $ $432$ $13$ $( 1, 3,18,25,16, 8,13, 5,24,22,10,19,12)( 2, 4,17,26,15, 7,14, 6,23,21, 9,20, 11)$
$ 4, 4, 4, 4, 4, 4, 1, 1 $ $702$ $4$ $( 1,18,19,21)( 2,17,20,22)( 3,16, 4,15)( 5, 9,12,14)( 6,10,11,13)(23,25,24,26)$
$ 8, 8, 8, 2 $ $702$ $8$ $( 1,10,18,11,19,13,21, 6)( 2, 9,17,12,20,14,22, 5)( 3,26,16,23, 4,25,15,24) ( 7, 8)$
$ 8, 8, 8, 2 $ $702$ $8$ $( 1, 6,21,13,19,11,18,10)( 2, 5,22,14,20,12,17, 9)( 3,24,15,25, 4,23,16,26) ( 7, 8)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 1, 1 $ $624$ $3$ $( 1, 4,22)( 2, 3,21)( 5,14,19)( 6,13,20)( 7, 9,23)( 8,10,24)(11,25,18) (12,26,17)$

Group invariants

Order:  $5616=2^{4} \cdot 3^{3} \cdot 13$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table:   
      2  4  .  4  3  3  3  1  1   .   .   .   .
      3  3  2  1  .  .  .  3  1   .   .   .   .
     13  1  .  .  .  .  .  .  .   1   1   1   1

        1a 3a 2a 4a 8a 8b 3b 6a 13a 13b 13c 13d
     2P 1a 3a 1a 2a 4a 4a 3b 3b 13d 13a 13b 13c
     3P 1a 1a 2a 4a 8a 8b 1a 2a 13a 13b 13c 13d
     5P 1a 3a 2a 4a 8b 8a 3b 6a 13d 13a 13b 13c
     7P 1a 3a 2a 4a 8b 8a 3b 6a 13b 13c 13d 13a
    11P 1a 3a 2a 4a 8a 8b 3b 6a 13b 13c 13d 13a
    13P 1a 3a 2a 4a 8b 8a 3b 6a  1a  1a  1a  1a

X.1      1  1  1  1  1  1  1  1   1   1   1   1
X.2     12  .  4  .  .  .  3  1  -1  -1  -1  -1
X.3     13  1 -3  1 -1 -1  4  .   .   .   .   .
X.4     16  1  .  .  .  . -2  .   B  /C  /B   C
X.5     16  1  .  .  .  . -2  .  /B   C   B  /C
X.6     16  1  .  .  .  . -2  .   C   B  /C  /B
X.7     16  1  .  .  .  . -2  .  /C  /B   C   B
X.8     26 -1  2  2  .  . -1 -1   .   .   .   .
X.9     26 -1 -2  .  A -A -1  1   .   .   .   .
X.10    26 -1 -2  . -A  A -1  1   .   .   .   .
X.11    27  .  3 -1 -1 -1  .  .   1   1   1   1
X.12    39  . -1 -1  1  1  3 -1   .   .   .   .

A = -E(8)-E(8)^3
  = -Sqrt(-2) = -i2
B = E(13)^2+E(13)^5+E(13)^6
C = E(13)^4+E(13)^10+E(13)^12