Label 22T39
Order \(675840\)
n \(22\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $22$
Transitive number $t$ :  $39$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,9,12,13,17,2,10,11,14,18)(3,22,19,6,8)(4,21,20,5,7)(15,16), (1,7,6,2,8,5)(3,4)(9,21,18)(10,22,17)(11,15,13,12,16,14)(19,20)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
660:  $\PSL(2,11)$

Resolvents shown for degrees $\leq 47$


Degree 2: None

Degree 11: $\PSL(2,11)$

Low degree siblings


Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 56 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $675840=2^{12} \cdot 3 \cdot 5 \cdot 11$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.