Show commands: Magma
Group invariants
Abstract group: | $C_7^3:C_{18}$ |
| |
Order: | $6174=2 \cdot 3^{2} \cdot 7^{3}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $21$ |
| |
Transitive number $t$: | $42$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,2,5,7,6,3)(8,9,12,14,13,10)(15,20,21,17,19,18)$, $(1,14,18,6,9,17,7,8,21,3,12,19,5,10,20,4,11,16)(2,13,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $9$: $C_9$ $18$: $C_{18}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 7: None
Low degree siblings
21T42 x 18, 42T466 x 19Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{21}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{9},1^{3}$ | $343$ | $2$ | $9$ | $( 1, 7)( 2, 6)( 3, 5)( 8,14)( 9,13)(10,12)(15,19)(16,18)(20,21)$ |
3A1 | $3^{6},1^{3}$ | $343$ | $3$ | $12$ | $( 1, 6, 5)( 2, 3, 7)( 8,13,12)( 9,10,14)(15,16,20)(18,21,19)$ |
3A-1 | $3^{6},1^{3}$ | $343$ | $3$ | $12$ | $( 1, 5, 6)( 2, 7, 3)( 8,12,13)( 9,14,10)(15,20,16)(18,19,21)$ |
6A1 | $6^{3},1^{3}$ | $343$ | $6$ | $15$ | $( 1, 3, 6, 7, 5, 2)( 8,10,13,14,12, 9)(15,21,16,19,20,18)$ |
6A-1 | $6^{3},1^{3}$ | $343$ | $6$ | $15$ | $( 1, 2, 5, 7, 6, 3)( 8, 9,12,14,13,10)(15,18,20,19,16,21)$ |
7A | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 4, 7, 3, 6, 2, 5)( 8,12, 9,13,10,14,11)(15,16,17,18,19,20,21)$ |
7B | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 2, 3, 4, 5, 6, 7)( 8, 9,10,11,12,13,14)(15,21,20,19,18,17,16)$ |
7C | $7^{2},1^{7}$ | $18$ | $7$ | $12$ | $( 1, 4, 7, 3, 6, 2, 5)(15,20,18,16,21,19,17)$ |
7D | $7^{2},1^{7}$ | $18$ | $7$ | $12$ | $( 1, 5, 2, 6, 3, 7, 4)( 8,13,11, 9,14,12,10)$ |
7E | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,12, 9,13,10,14,11)(15,21,20,19,18,17,16)$ |
7F | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8, 9,10,11,12,13,14)(15,19,16,20,17,21,18)$ |
7G | $7^{2},1^{7}$ | $18$ | $7$ | $12$ | $( 8,10,12,14, 9,11,13)(15,16,17,18,19,20,21)$ |
7H | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 6, 4, 2, 7, 5, 3)( 8,14,13,12,11,10, 9)(15,21,20,19,18,17,16)$ |
7I | $7^{2},1^{7}$ | $18$ | $7$ | $12$ | $( 1, 3, 5, 7, 2, 4, 6)( 8, 9,10,11,12,13,14)$ |
7J | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 6, 4, 2, 7, 5, 3)( 8,10,12,14, 9,11,13)(15,18,21,17,20,16,19)$ |
7K | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 4, 7, 3, 6, 2, 5)( 8,14,13,12,11,10, 9)(15,17,19,21,16,18,20)$ |
7L | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 6, 4, 2, 7, 5, 3)( 8,13,11, 9,14,12,10)(15,16,17,18,19,20,21)$ |
7M | $7^{2},1^{7}$ | $18$ | $7$ | $12$ | $( 1, 4, 7, 3, 6, 2, 5)( 8, 9,10,11,12,13,14)$ |
7N | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 3, 5, 7, 2, 4, 6)( 8,14,13,12,11,10, 9)(15,21,20,19,18,17,16)$ |
7O | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 2, 3, 4, 5, 6, 7)( 8,14,13,12,11,10, 9)(15,19,16,20,17,21,18)$ |
7P | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 4, 7, 3, 6, 2, 5)( 8,13,11, 9,14,12,10)(15,18,21,17,20,16,19)$ |
7Q | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,10,12,14, 9,11,13)(15,19,16,20,17,21,18)$ |
7R | $7,1^{14}$ | $18$ | $7$ | $6$ | $(15,21,20,19,18,17,16)$ |
7S | $7^{2},1^{7}$ | $18$ | $7$ | $12$ | $( 1, 6, 4, 2, 7, 5, 3)(15,17,19,21,16,18,20)$ |
9A1 | $9^{2},3$ | $343$ | $9$ | $18$ | $( 1,13,21, 6,12,19, 5, 8,18)( 2,10,15, 3,14,16, 7, 9,20)( 4,11,17)$ |
9A-1 | $9^{2},3$ | $343$ | $9$ | $18$ | $( 1,18, 8, 5,19,12, 6,21,13)( 2,20, 9, 7,16,14, 3,15,10)( 4,17,11)$ |
9A2 | $9^{2},3$ | $343$ | $9$ | $18$ | $( 1,21,12, 5,18,13, 6,19, 8)( 2,15,14, 7,20,10, 3,16, 9)( 4,17,11)$ |
9A-2 | $9^{2},3$ | $343$ | $9$ | $18$ | $( 1, 8,19, 6,13,18, 5,12,21)( 2, 9,16, 3,10,20, 7,14,15)( 4,11,17)$ |
9A4 | $9^{2},3$ | $343$ | $9$ | $18$ | $( 1,12,18, 6, 8,21, 5,13,19)( 2,14,20, 3, 9,15, 7,10,16)( 4,11,17)$ |
9A-4 | $9^{2},3$ | $343$ | $9$ | $18$ | $( 1,19,13, 5,21, 8, 6,18,12)( 2,16,10, 7,15, 9, 3,20,14)( 4,17,11)$ |
18A1 | $18,3$ | $343$ | $18$ | $19$ | $( 1,15,13, 3,21,14, 6,16,12, 7,19, 9, 5,20, 8, 2,18,10)( 4,17,11)$ |
18A-1 | $18,3$ | $343$ | $18$ | $19$ | $( 1,10,18, 2, 8,20, 5, 9,19, 7,12,16, 6,14,21, 3,13,15)( 4,11,17)$ |
18A5 | $18,3$ | $343$ | $18$ | $19$ | $( 1,14,19, 2,13,16, 5,10,21, 7, 8,15, 6, 9,18, 3,12,20)( 4,11,17)$ |
18A-5 | $18,3$ | $343$ | $18$ | $19$ | $( 1,20,12, 3,18, 9, 6,15, 8, 7,21,10, 5,16,13, 2,19,14)( 4,17,11)$ |
18A7 | $18,3$ | $343$ | $18$ | $19$ | $( 1,16, 8, 3,19,10, 6,20,13, 7,18,14, 5,15,12, 2,21, 9)( 4,17,11)$ |
18A-7 | $18,3$ | $343$ | $18$ | $19$ | $( 1, 9,21, 2,12,15, 5,14,18, 7,13,20, 6,10,19, 3, 8,16)( 4,11,17)$ |
Malle's constant $a(G)$: $1/6$
Character table
37 x 37 character table
Regular extensions
Data not computed