Label 21T34
Order \(3087\)
n \(21\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $34$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,11,20,2,9,16,3,14,19,4,12,15,5,10,18,6,8,21,7,13,17), (1,3,4)(2,7,6)(8,9,13)(11,14,12)(16,19,17)(18,20,21)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
3:  $C_3$ x 4
9:  $C_3^2$
21:  $C_7:C_3$ x 3
63:  21T7 x 3
441:  21T21 x 3

Resolvents shown for degrees $\leq 47$


Degree 3: $C_3$

Degree 7: None

Low degree siblings

21T34 x 11

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 63 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $3087=3^{2} \cdot 7^{3}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.