Properties

Label 20T37
Order \(120\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $D_5\times A_4$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $37$
Group :  $D_5\times A_4$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,16,2,13,4,14)(3,15)(5,12,6,9,8,10)(7,11)(17,20,18), (1,8,9,16,17,4,5,12,13,20)(2,7,10,15,18,3,6,11,14,19)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
10:  $D_{5}$
12:  $A_4$
24:  $A_4\times C_2$
30:  $D_5\times C_3$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: $A_4$

Degree 5: $D_{5}$

Degree 10: None

Low degree siblings

30T20, 30T28, 40T65

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $5$ $2$ $( 5,17)( 6,18)( 7,19)( 8,20)( 9,13)(10,14)(11,15)(12,16)$
$ 3, 3, 3, 3, 3, 1, 1, 1, 1, 1 $ $4$ $3$ $( 2, 3, 4)( 6, 7, 8)(10,11,12)(14,15,16)(18,19,20)$
$ 6, 6, 3, 2, 2, 1 $ $20$ $6$ $( 2, 3, 4)( 5,17)( 6,19, 8,18, 7,20)( 9,13)(10,15,12,14,11,16)$
$ 3, 3, 3, 3, 3, 1, 1, 1, 1, 1 $ $4$ $3$ $( 2, 4, 3)( 6, 8, 7)(10,12,11)(14,16,15)(18,20,19)$
$ 6, 6, 3, 2, 2, 1 $ $20$ $6$ $( 2, 4, 3)( 5,17)( 6,20, 7,18, 8,19)( 9,13)(10,16,11,14,12,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $3$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $15$ $2$ $( 1, 2)( 3, 4)( 5,18)( 6,17)( 7,20)( 8,19)( 9,14)(10,13)(11,16)(12,15)$
$ 5, 5, 5, 5 $ $2$ $5$ $( 1, 5, 9,13,17)( 2, 6,10,14,18)( 3, 7,11,15,19)( 4, 8,12,16,20)$
$ 15, 5 $ $8$ $15$ $( 1, 5, 9,13,17)( 2, 7,12,14,19, 4, 6,11,16,18, 3, 8,10,15,20)$
$ 15, 5 $ $8$ $15$ $( 1, 5, 9,13,17)( 2, 8,11,14,20, 3, 6,12,15,18, 4, 7,10,16,19)$
$ 10, 10 $ $6$ $10$ $( 1, 6, 9,14,17, 2, 5,10,13,18)( 3, 8,11,16,19, 4, 7,12,15,20)$
$ 5, 5, 5, 5 $ $2$ $5$ $( 1, 9,17, 5,13)( 2,10,18, 6,14)( 3,11,19, 7,15)( 4,12,20, 8,16)$
$ 15, 5 $ $8$ $15$ $( 1, 9,17, 5,13)( 2,11,20, 6,15, 4,10,19, 8,14, 3,12,18, 7,16)$
$ 15, 5 $ $8$ $15$ $( 1, 9,17, 5,13)( 2,12,19, 6,16, 3,10,20, 7,14, 4,11,18, 8,15)$
$ 10, 10 $ $6$ $10$ $( 1,10,17, 6,13, 2, 9,18, 5,14)( 3,12,19, 8,15, 4,11,20, 7,16)$

Group invariants

Order:  $120=2^{3} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [120, 39]
Character table:   
      2  3  3  1   1  1   1  3  3  2   .   .   2  2   .   .   2
      3  1  1  1   1  1   1  .  .  1   1   1   .  1   1   1   .
      5  1  .  1   .  1   .  1  .  1   1   1   1  1   1   1   1

        1a 2a 3a  6a 3b  6b 2b 2c 5a 15a 15b 10a 5b 15c 15d 10b
     2P 1a 1a 3b  3b 3a  3a 1a 1a 5b 15d 15c  5b 5a 15b 15a  5a
     3P 1a 2a 1a  2a 1a  2a 2b 2c 5b  5b  5b 10b 5a  5a  5a 10a
     5P 1a 2a 3b  6b 3a  6a 2b 2c 1a  3b  3a  2b 1a  3b  3a  2b
     7P 1a 2a 3a  6a 3b  6b 2b 2c 5b 15c 15d 10b 5a 15a 15b 10a
    11P 1a 2a 3b  6b 3a  6a 2b 2c 5a 15b 15a 10a 5b 15d 15c 10b
    13P 1a 2a 3a  6a 3b  6b 2b 2c 5b 15c 15d 10b 5a 15a 15b 10a

X.1      1  1  1   1  1   1  1  1  1   1   1   1  1   1   1   1
X.2      1 -1  1  -1  1  -1  1 -1  1   1   1   1  1   1   1   1
X.3      1 -1  A  -A /A -/A  1 -1  1   A  /A   1  1   A  /A   1
X.4      1 -1 /A -/A  A  -A  1 -1  1  /A   A   1  1  /A   A   1
X.5      1  1  A   A /A  /A  1  1  1   A  /A   1  1   A  /A   1
X.6      1  1 /A  /A  A   A  1  1  1  /A   A   1  1  /A   A   1
X.7      2  .  2   .  2   .  2  .  C   C   C   C *C  *C  *C  *C
X.8      2  .  2   .  2   .  2  . *C  *C  *C  *C  C   C   C   C
X.9      2  .  B   . /B   .  2  .  C   E  /E   C *C   F  /F  *C
X.10     2  . /B   .  B   .  2  .  C  /E   E   C *C  /F   F  *C
X.11     2  .  B   . /B   .  2  . *C   F  /F  *C  C   E  /E   C
X.12     2  . /B   .  B   .  2  . *C  /F   F  *C  C  /E   E   C
X.13     3 -3  .   .  .   . -1  1  3   .   .  -1  3   .   .  -1
X.14     3  3  .   .  .   . -1 -1  3   .   .  -1  3   .   .  -1
X.15     6  .  .   .  .   . -2  .  D   .   .  -C *D   .   . -*C
X.16     6  .  .   .  .   . -2  . *D   .   . -*C  D   .   .  -C

A = E(3)^2
  = (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)^2
  = -1-Sqrt(-3) = -1-i3
C = E(5)+E(5)^4
  = (-1+Sqrt(5))/2 = b5
D = 3*E(5)+3*E(5)^4
  = (-3+3*Sqrt(5))/2 = 3b5
E = E(15)^7+E(15)^13
F = E(15)+E(15)^4