Properties

Label 20T16
Order \(80\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $C_2^2\times F_5$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $16$
Group :  $C_2^2\times F_5$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,16,14,20)(2,15,13,19)(3,10,11,5)(4,9,12,6)(7,17)(8,18), (1,9,14,6)(2,10,13,5)(3,15,11,19)(4,16,12,20)(7,8)(17,18), (1,16,10,3,17,11,5,20,14,7)(2,15,9,4,18,12,6,19,13,8)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $C_4\times C_2$ x 6, $C_2^3$
16:  $C_4\times C_2^2$
20:  $F_5$
40:  $F_{5}\times C_2$ x 3

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Degree 5: $F_5$

Degree 10: $F_{5}\times C_2$ x 3

Low degree siblings

20T16 x 3, 40T44 x 3, 40T56

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 4, 4, 4, 4, 1, 1, 1, 1 $ $5$ $4$ $( 3, 7,20,16)( 4, 8,19,15)( 5,14,17,10)( 6,13,18, 9)$
$ 4, 4, 4, 4, 1, 1, 1, 1 $ $5$ $4$ $( 3,16,20, 7)( 4,15,19, 8)( 5,10,17,14)( 6, 9,18,13)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $5$ $2$ $( 3,20)( 4,19)( 5,17)( 6,18)( 7,16)( 8,15)( 9,13)(10,14)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$
$ 4, 4, 4, 4, 2, 2 $ $5$ $4$ $( 1, 2)( 3, 8,20,15)( 4, 7,19,16)( 5,13,17, 9)( 6,14,18,10)(11,12)$
$ 4, 4, 4, 4, 2, 2 $ $5$ $4$ $( 1, 2)( 3,15,20, 8)( 4,16,19, 7)( 5, 9,17,13)( 6,10,18,14)(11,12)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $5$ $2$ $( 1, 2)( 3,19)( 4,20)( 5,18)( 6,17)( 7,15)( 8,16)( 9,14)(10,13)(11,12)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $5$ $2$ $( 1, 3)( 2, 4)( 5,20)( 6,19)( 7,17)( 8,18)( 9,15)(10,16)(11,14)(12,13)$
$ 10, 10 $ $4$ $10$ $( 1, 3, 5, 7,10,11,14,16,17,20)( 2, 4, 6, 8, 9,12,13,15,18,19)$
$ 4, 4, 4, 4, 2, 2 $ $5$ $4$ $( 1, 3,10, 7)( 2, 4, 9, 8)( 5,16)( 6,15)(11,14,20,17)(12,13,19,18)$
$ 4, 4, 4, 4, 2, 2 $ $5$ $4$ $( 1, 3,17,16)( 2, 4,18,15)( 5,11,14, 7)( 6,12,13, 8)( 9,19)(10,20)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $5$ $2$ $( 1, 4)( 2, 3)( 5,19)( 6,20)( 7,18)( 8,17)( 9,16)(10,15)(11,13)(12,14)$
$ 10, 10 $ $4$ $10$ $( 1, 4, 5, 8,10,12,14,15,17,19)( 2, 3, 6, 7, 9,11,13,16,18,20)$
$ 4, 4, 4, 4, 2, 2 $ $5$ $4$ $( 1, 4,10, 8)( 2, 3, 9, 7)( 5,15)( 6,16)(11,13,20,18)(12,14,19,17)$
$ 4, 4, 4, 4, 2, 2 $ $5$ $4$ $( 1, 4,17,15)( 2, 3,18,16)( 5,12,14, 8)( 6,11,13, 7)( 9,20)(10,19)$
$ 5, 5, 5, 5 $ $4$ $5$ $( 1, 5,10,14,17)( 2, 6, 9,13,18)( 3, 7,11,16,20)( 4, 8,12,15,19)$
$ 10, 10 $ $4$ $10$ $( 1, 6,10,13,17, 2, 5, 9,14,18)( 3, 8,11,15,20, 4, 7,12,16,19)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1,11)( 2,12)( 3,14)( 4,13)( 5,16)( 6,15)( 7,17)( 8,18)( 9,19)(10,20)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1,12)( 2,11)( 3,13)( 4,14)( 5,15)( 6,16)( 7,18)( 8,17)( 9,20)(10,19)$

Group invariants

Order:  $80=2^{4} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [80, 50]
Character table:   
      2  4  4  4  4  4  4  4  4  4   2  4  4  4   2  4  4  2   2  4  4
      5  1  .  .  .  1  .  .  .  .   1  .  .  .   1  .  .  1   1  1  1

        1a 4a 4b 2a 2b 4c 4d 2c 2d 10a 4e 4f 2e 10b 4g 4h 5a 10c 2f 2g
     2P 1a 2a 2a 1a 1a 2a 2a 1a 1a  5a 2a 2a 1a  5a 2a 2a 5a  5a 1a 1a
     3P 1a 4b 4a 2a 2b 4d 4c 2c 2d 10a 4f 4e 2e 10b 4h 4g 5a 10c 2f 2g
     5P 1a 4a 4b 2a 2b 4c 4d 2c 2d  2f 4e 4f 2e  2g 4g 4h 1a  2b 2f 2g
     7P 1a 4b 4a 2a 2b 4d 4c 2c 2d 10a 4f 4e 2e 10b 4h 4g 5a 10c 2f 2g

X.1      1  1  1  1  1  1  1  1  1   1  1  1  1   1  1  1  1   1  1  1
X.2      1 -1 -1  1 -1  1  1 -1 -1  -1  1  1  1   1 -1 -1  1  -1 -1  1
X.3      1 -1 -1  1 -1  1  1 -1  1   1 -1 -1 -1  -1  1  1  1  -1  1 -1
X.4      1 -1 -1  1  1 -1 -1  1 -1  -1  1  1 -1  -1  1  1  1   1 -1 -1
X.5      1 -1 -1  1  1 -1 -1  1  1   1 -1 -1  1   1 -1 -1  1   1  1  1
X.6      1  1  1  1 -1 -1 -1 -1 -1  -1 -1 -1  1   1  1  1  1  -1 -1  1
X.7      1  1  1  1 -1 -1 -1 -1  1   1  1  1 -1  -1 -1 -1  1  -1  1 -1
X.8      1  1  1  1  1  1  1  1 -1  -1 -1 -1 -1  -1 -1 -1  1   1 -1 -1
X.9      1  A -A -1 -1 -A  A  1 -1   1  A -A  1  -1 -A  A  1  -1  1 -1
X.10     1 -A  A -1 -1  A -A  1 -1   1 -A  A  1  -1  A -A  1  -1  1 -1
X.11     1  A -A -1 -1 -A  A  1  1  -1 -A  A -1   1  A -A  1  -1 -1  1
X.12     1 -A  A -1 -1  A -A  1  1  -1  A -A -1   1 -A  A  1  -1 -1  1
X.13     1  A -A -1  1  A -A -1 -1   1  A -A -1   1  A -A  1   1  1  1
X.14     1 -A  A -1  1 -A  A -1 -1   1 -A  A -1   1 -A  A  1   1  1  1
X.15     1  A -A -1  1  A -A -1  1  -1 -A  A  1  -1 -A  A  1   1 -1 -1
X.16     1 -A  A -1  1 -A  A -1  1  -1  A -A  1  -1  A -A  1   1 -1 -1
X.17     4  .  .  . -4  .  .  .  .  -1  .  .  .   1  .  . -1   1  4 -4
X.18     4  .  .  . -4  .  .  .  .   1  .  .  .  -1  .  . -1   1 -4  4
X.19     4  .  .  .  4  .  .  .  .  -1  .  .  .  -1  .  . -1  -1  4  4
X.20     4  .  .  .  4  .  .  .  .   1  .  .  .   1  .  . -1  -1 -4 -4

A = -E(4)
  = -Sqrt(-1) = -i