Properties

Label 14T30
Order \(1092\)
n \(14\)
Cyclic No
Abelian No
Solvable No
Primitive Yes
$p$-group No
Group: $\PSL(2,13)$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $14$
Transitive number $t$ :  $30$
Group :  $\PSL(2,13)$
CHM label :  $L(14)=PSL(2,13)$
Parity:  $1$
Primitive:  Yes
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,12)(2,6)(3,4)(7,11)(9,10)(13,14), (1,4,3,12,9,10)(2,8,6,11,5,7), (1,2,3,4,5,6,7,8,9,10,11,12,14)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

None

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 7: None

Low degree siblings

28T120, 42T176

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 3, 3, 3, 3, 1, 1 $ $182$ $3$ $( 1, 4, 7)( 2,14, 9)( 3, 5,13)( 6,12, 8)$
$ 2, 2, 2, 2, 2, 2, 1, 1 $ $91$ $2$ $( 1, 5)( 2,12)( 3, 7)( 4,13)( 6, 9)( 8,14)$
$ 6, 6, 1, 1 $ $182$ $6$ $( 1, 3, 4, 5, 7,13)( 2, 6,14,12, 9, 8)$
$ 7, 7 $ $156$ $7$ $( 1,10, 3, 9, 5, 6,14)( 2, 7,13,12, 4, 8,11)$
$ 7, 7 $ $156$ $7$ $( 1, 5,10, 6, 3,14, 9)( 2, 4, 7, 8,13,11,12)$
$ 7, 7 $ $156$ $7$ $( 1, 3, 5,14,10, 9, 6)( 2,13, 4,11, 7,12, 8)$
$ 13, 1 $ $84$ $13$ $( 1,13,11, 2,12, 4, 7, 9, 3, 5, 8,14,10)$
$ 13, 1 $ $84$ $13$ $( 1, 3, 2,14, 7,13, 5,12,10, 9,11, 8, 4)$

Group invariants

Order:  $1092=2^{2} \cdot 3 \cdot 7 \cdot 13$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  [1092, 25]
Character table:   
     2  2  .  .  .  1  2  1   .   .
     3  1  .  .  .  1  1  1   .   .
     7  1  1  1  1  .  .  .   .   .
    13  1  .  .  .  .  .  .   1   1

       1a 7a 7b 7c 3a 2a 6a 13a 13b
    2P 1a 7c 7a 7b 3a 1a 3a 13b 13a
    3P 1a 7b 7c 7a 1a 2a 2a 13a 13b
    5P 1a 7c 7a 7b 3a 2a 6a 13b 13a
    7P 1a 1a 1a 1a 3a 2a 6a 13b 13a
   11P 1a 7b 7c 7a 3a 2a 6a 13b 13a
   13P 1a 7a 7b 7c 3a 2a 6a  1a  1a

X.1     1  1  1  1  1  1  1   1   1
X.2     7  .  .  .  1 -1 -1   D  *D
X.3     7  .  .  .  1 -1 -1  *D   D
X.4    12  A  B  C  .  .  .  -1  -1
X.5    12  B  C  A  .  .  .  -1  -1
X.6    12  C  A  B  .  .  .  -1  -1
X.7    13 -1 -1 -1  1  1  1   .   .
X.8    14  .  .  . -1  2 -1   1   1
X.9    14  .  .  . -1 -2  1   1   1

A = -E(7)^3-E(7)^4
B = -E(7)^2-E(7)^5
C = -E(7)-E(7)^6
D = -E(13)-E(13)^3-E(13)^4-E(13)^9-E(13)^10-E(13)^12
  = (1-Sqrt(13))/2 = -b13