Show commands: Magma
Group invariants
Abstract group: | $F_5 \wr C_2$ |
| |
Order: | $800=2^{5} \cdot 5^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $10$ |
| |
Transitive number $t$: | $33$ |
| |
CHM label: | $[F(5)^{2}]2$ | ||
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(2,4,6,8,10)$, $(1,6)(2,7)(3,8)(4,9)(5,10)$, $(2,4,8,6)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ $32$: $C_4\wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: None
Low degree siblings
20T155, 20T161, 20T167, 20T169, 25T50, 40T874, 40T875, 40T876, 40T877, 40T878, 40T879, 40T880, 40T881, 40T882, 40T883Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{10}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{2},1^{6}$ | $10$ | $2$ | $2$ | $(1,9)(3,7)$ |
2B | $2^{5}$ | $20$ | $2$ | $5$ | $( 1, 6)( 2, 9)( 3,10)( 4, 5)( 7, 8)$ |
2C | $2^{4},1^{2}$ | $25$ | $2$ | $4$ | $( 1, 9)( 2,10)( 3, 7)( 4, 8)$ |
4A1 | $4,1^{6}$ | $10$ | $4$ | $3$ | $(1,3,7,5)$ |
4A-1 | $4,1^{6}$ | $10$ | $4$ | $3$ | $(1,5,7,3)$ |
4B1 | $4^{2},1^{2}$ | $25$ | $4$ | $6$ | $( 1, 3, 9, 7)( 2, 4,10, 8)$ |
4B-1 | $4^{2},1^{2}$ | $25$ | $4$ | $6$ | $( 1, 7, 9, 3)( 2, 8,10, 4)$ |
4C | $4^{2},1^{2}$ | $50$ | $4$ | $6$ | $( 1, 9, 3, 5)( 2, 8,10, 4)$ |
4D1 | $4,2^{2},1^{2}$ | $50$ | $4$ | $5$ | $( 1, 7, 9, 3)( 4,10)( 6, 8)$ |
4D-1 | $4,2^{2},1^{2}$ | $50$ | $4$ | $5$ | $( 1, 3, 9, 7)( 4,10)( 6, 8)$ |
4E | $4^{2},2$ | $100$ | $4$ | $7$ | $( 1,10, 7, 6)( 2, 5, 4, 3)( 8, 9)$ |
5A | $5,1^{5}$ | $8$ | $5$ | $4$ | $( 2, 8, 4,10, 6)$ |
5B | $5^{2}$ | $16$ | $5$ | $8$ | $( 1, 9, 7, 5, 3)( 2, 8, 4,10, 6)$ |
8A1 | $8,2$ | $100$ | $8$ | $8$ | $( 1, 2, 3, 4, 9,10, 7, 8)( 5, 6)$ |
8A-1 | $8,2$ | $100$ | $8$ | $8$ | $( 1, 8, 7,10, 9, 4, 3, 2)( 5, 6)$ |
10A | $5,2^{2},1$ | $40$ | $10$ | $6$ | $( 1, 7)( 2,10, 8, 6, 4)( 3, 5)$ |
10B | $10$ | $80$ | $10$ | $9$ | $( 1, 4, 9,10, 7, 6, 5, 2, 3, 8)$ |
20A1 | $5,4,1$ | $40$ | $20$ | $7$ | $( 1, 3, 7, 5)( 2, 6,10, 4, 8)$ |
20A-1 | $5,4,1$ | $40$ | $20$ | $7$ | $( 1, 5, 7, 3)( 2, 8, 4,10, 6)$ |
Malle's constant $a(G)$: $1/2$
Character table
1A | 2A | 2B | 2C | 4A1 | 4A-1 | 4B1 | 4B-1 | 4C | 4D1 | 4D-1 | 4E | 5A | 5B | 8A1 | 8A-1 | 10A | 10B | 20A1 | 20A-1 | ||
Size | 1 | 10 | 20 | 25 | 10 | 10 | 25 | 25 | 50 | 50 | 50 | 100 | 8 | 16 | 100 | 100 | 40 | 80 | 40 | 40 | |
2 P | 1A | 1A | 1A | 1A | 2A | 2A | 2C | 2C | 2C | 2A | 2A | 2C | 5A | 5B | 4B1 | 4B-1 | 5A | 5B | 10A | 10A | |
5 P | 1A | 2A | 2B | 2C | 4A1 | 4A-1 | 4B1 | 4B-1 | 4C | 4D1 | 4D-1 | 4E | 1A | 1A | 8A1 | 8A-1 | 2A | 2B | 4A1 | 4A-1 | |
Type | |||||||||||||||||||||
800.1191.1a | R | ||||||||||||||||||||
800.1191.1b | R | ||||||||||||||||||||
800.1191.1c | R | ||||||||||||||||||||
800.1191.1d | R | ||||||||||||||||||||
800.1191.1e1 | C | ||||||||||||||||||||
800.1191.1e2 | C | ||||||||||||||||||||
800.1191.1f1 | C | ||||||||||||||||||||
800.1191.1f2 | C | ||||||||||||||||||||
800.1191.2a | R | ||||||||||||||||||||
800.1191.2b | R | ||||||||||||||||||||
800.1191.2c1 | C | ||||||||||||||||||||
800.1191.2c2 | C | ||||||||||||||||||||
800.1191.2d1 | C | ||||||||||||||||||||
800.1191.2d2 | C | ||||||||||||||||||||
800.1191.8a | R | ||||||||||||||||||||
800.1191.8b | R | ||||||||||||||||||||
800.1191.8c1 | C | ||||||||||||||||||||
800.1191.8c2 | C | ||||||||||||||||||||
800.1191.16a | R | ||||||||||||||||||||
800.1191.16b | R |
Regular extensions
$f_{ 1 } =$ |
$x^{10} + 20 x^{8} - 5 x^{7} + 70 x^{6} + \left(2 t - 50\right) x^{5} + \left(25 t + 100\right) x^{4} + \left(20 t + 75\right) x^{3} + \left(-5 t + 225\right) x^{2} - 30 t x + t^{2}$
|