Further refine search

Results (displaying matches 1-100 of 1349242) Next

LMFDB label Cremona label Isogeny class Weierstrass Coefficients Rank Torsion order
11.a1 11a2 11.a [0, -1, 1, -7820, -263580] 0 1
19.a1 19a2 19.a [0, 1, 1, -769, -8470] 0 1
26.a1 26a2 26.a [1, 0, 1, -460, -3830] 0 1
26.b1 26b2 26.b [1, -1, 1, -213, -1257] 0 1
27.a1 27a2 27.a [0, 0, 1, -270, -1708] 0 1
35.a1 35a2 35.a [0, 1, 1, -131, -650] 0 1
37.a1 37a1 37.a [0, 0, 1, -1, 0] 1 1
37.b1 37b2 37.b [0, 1, 1, -1873, -31833] 0 1
38.a1 38a2 38.a [1, 0, 1, -86, -2456] 0 1
38.b1 38b2 38.b [1, 1, 1, -70, -279] 0 1
43.a1 43a1 43.a [0, 1, 1, 0, 0] 1 1
44.a1 44a2 44.a [0, 1, 0, -77, -289] 0 1
50.a1 50a2 50.a [1, 0, 1, -126, -552] 0 1
50.a4 50a4 50.a [1, 0, 1, 549, -2202] 0 1
50.b1 50b4 50.b [1, 1, 1, -3138, -68969] 0 1
50.b2 50b3 50.b [1, 1, 1, -13, -219] 0 1
51.a1 51a2 51.a [0, 1, 1, -59, -196] 0 1
53.a1 53a1 53.a [1, -1, 1, 0, 0] 1 1
54.a1 54a2 54.a [1, -1, 0, -123, -667] 0 1
54.b1 54b2 54.b [1, -1, 1, -29, -53] 0 1
57.a1 57a1 57.a [0, -1, 1, -2, 2] 1 1
57.b1 57c2 57.b [0, 1, 1, -4390, -113432] 0 1
58.a1 58a1 58.a [1, -1, 0, -1, 1] 1 1
58.b1 58b2 58.b [1, 1, 1, -455, -3951] 0 1
61.a1 61a1 61.a [1, 0, 0, -2, 1] 1 1
67.a1 67a1 67.a [0, 1, 1, -12, -21] 0 1
75.a1 75c2 75.a [0, 1, 1, -208, -1256] 0 1
75.c1 75a1 75.c [0, -1, 1, -8, -7] 0 1
75.c2 75a2 75.c [0, -1, 1, 42, 443] 0 1
76.a1 76a1 76.a [0, -1, 0, -21, -31] 0 1
77.a1 77a1 77.a [0, 0, 1, 2, 0] 1 1
77.b3 77b2 77.b [0, 1, 1, 441, -15815] 0 1
79.a1 79a1 79.a [1, 1, 1, -2, 0] 1 1
83.a1 83a1 83.a [1, 1, 1, 1, 0] 1 1
88.a1 88a1 88.a [0, 0, 0, -4, 4] 1 1
89.a1 89a1 89.a [1, 1, 1, -1, 0] 1 1
91.a1 91a1 91.a [0, 0, 1, 1, 0] 1 1
91.b1 91b3 91.b [0, 1, 1, -117, -1245] 1 1
92.a1 92b1 92.a [0, 0, 0, -1, 1] 1 1
92.b1 92a2 92.b [0, 1, 0, -18, -43] 0 1
99.d1 99d3 99.d [0, 0, 1, -70383, 7187035] 0 1
99.d2 99d2 99.d [0, 0, 1, -93, 625] 0 1
99.d3 99d1 99.d [0, 0, 1, -3, -5] 0 1
101.a1 101a1 101.a [0, 1, 1, -1, -1] 1 1
104.a1 104a1 104.a [0, 1, 0, -16, -32] 0 1
106.a1 106b1 106.a [1, 1, 0, -7, 5] 1 1
106.b1 106d1 106.b [1, 1, 0, -27, -67] 0 1
106.c1 106a2 106.c [1, 0, 0, -9, -29] 0 1
106.d1 106c2 106.d [1, 0, 0, -24603, -1487407] 0 1
108.a1 108a2 108.a [0, 0, 0, 0, -108] 0 1
109.a1 109a1 109.a [1, -1, 0, -8, -7] 0 1
110.a2 110c2 110.a [1, 0, 1, 296, 1702] 0 1
110.b1 110a2 110.b [1, 1, 1, -5940, -178685] 0 1
110.c2 110b2 110.c [1, 0, 0, 9, -25] 0 1
115.a1 115a1 115.a [0, 0, 1, 7, -11] 0 1
116.a1 116a1 116.a [0, 0, 0, -4831, -129242] 0 1
116.b2 116b2 116.b [0, 1, 0, 36, -76] 0 1
118.a1 118a1 118.a [1, 1, 0, 1, 1] 1 1
118.b1 118d1 118.b [1, 1, 0, 56, -192] 0 1
118.c2 118b2 118.c [1, 1, 1, 115, -2481] 0 1
118.d1 118c1 118.d [1, 1, 1, -4, -5] 0 1
121.a1 121a2 121.a [1, 1, 1, -305, 7888] 0 1
121.a2 121a1 121.a [1, 1, 1, -30, -76] 0 1
121.b1 121b2 121.b [0, -1, 1, -887, -10143] 1 1
121.b2 121b1 121.b [0, -1, 1, -7, 10] 1 1
121.c1 121c2 121.c [1, 1, 0, -3632, 82757] 0 1
121.c2 121c1 121.c [1, 1, 0, -2, -7] 0 1
121.d1 121d3 121.d [0, -1, 1, -946260, 354609639] 0 1
121.d2 121d2 121.d [0, -1, 1, -1250, 31239] 0 1
121.d3 121d1 121.d [0, -1, 1, -40, -221] 0 1
122.a1 122a1 122.a [1, 0, 1, 2, 0] 1 1
123.a2 123a2 123.a [0, 1, 1, 20, -890] 1 1
123.b1 123b1 123.b [0, -1, 1, 1, -1] 1 1
124.a2 124a2 124.a [0, 1, 0, 18, -11] 1 1
124.b1 124b1 124.b [0, 0, 0, -17, -27] 0 1
129.a1 129a1 129.a [0, -1, 1, -19, 39] 1 1
131.a1 131a1 131.a [0, -1, 1, 1, 0] 1 1
135.a1 135a1 135.a [0, 0, 1, -3, 4] 1 1
135.b1 135b1 135.b [0, 0, 1, -27, -115] 0 1
139.a1 139a1 139.a [1, 1, 0, -3, -4] 0 1
140.a1 140a2 140.a [0, 1, 0, -805, -9065] 0 1
140.b1 140b1 140.b [0, 0, 0, 32, 212] 0 1
141.a1 141a1 141.a [0, 1, 1, -12, 2] 1 1
141.d1 141d1 141.d [0, -1, 1, -1, 0] 1 1
141.e1 141e1 141.e [0, 1, 1, -26, -61] 0 1
142.a1 142b1 142.a [1, 1, 0, -1, -1] 1 1
142.c1 142e1 142.c [1, -1, 0, -2626, 52244] 0 1
142.d1 142a1 142.d [1, -1, 1, -12, 15] 1 1
142.e1 142d2 142.e [1, 0, 0, -58, -170] 0 1
143.a1 143a1 143.a [0, -1, 1, -1, -2] 1 1
147.b1 147c2 147.b [0, -1, 1, -912, 10919] 0 1
147.b2 147c1 147.b [0, -1, 1, -2, -1] 0 1
147.c1 147b2 147.c [0, 1, 1, -44704, -3655907] 0 1
147.c2 147b1 147.c [0, 1, 1, -114, 473] 0 1
148.a1 148a1 148.a [0, -1, 0, -5, 1] 1 1
152.a1 152a1 152.a [0, 1, 0, -1, 3] 1 1
152.b1 152b1 152.b [0, 1, 0, -8, -16] 0 1
153.a1 153a1 153.a [0, 0, 1, -3, 2] 1 1
153.b2 153b1 153.b [0, 0, 1, 6, 27] 1 1
153.d1 153d1 153.d [0, 0, 1, -27, -61] 0 1

Next

There are too many curves in the search results for downloading.