Properties

Label 9792.bj
Number of curves 4
Conductor 9792
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("9792.bj1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 9792.bj

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
9792.bj1 9792bx4 [0, 0, 0, -65100, -4417904] [2] 55296  
9792.bj2 9792bx3 [0, 0, 0, -59340, -5562992] [2] 27648  
9792.bj3 9792bx2 [0, 0, 0, -24780, 1501072] [2] 18432  
9792.bj4 9792bx1 [0, 0, 0, -1740, 17296] [2] 9216 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 9792.bj have rank \(0\).

Modular form 9792.2.a.bj

sage: E.q_eigenform(10)
 
\( q + 4q^{7} - 6q^{11} - 2q^{13} + q^{17} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.