Properties

 Label 96192.u Number of curves 2 Conductor 96192 CM no Rank 0 Graph Related objects

Show commands for: SageMath
sage: E = EllipticCurve("96192.u1")
sage: E.isogeny_class()

Elliptic curves in class 96192.u

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
96192.u1 96192f2 [0, 0, 0, -71724, 7373360] 2 442368
96192.u2 96192f1 [0, 0, 0, -2604, 212528] 2 221184 $$\Gamma_0(N)$$-optimal

Rank

sage: E.rank()

The elliptic curves in class 96192.u have rank $$0$$.

Modular form None

sage: E.q_eigenform(10)
$$q + 2q^{5} - 4q^{7} - 4q^{11} + 4q^{17} + 4q^{19} + O(q^{20})$$

Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 