# Properties

 Label 9450.cy Number of curves 2 Conductor 9450 CM no Rank 0 Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("9450.cy1")
sage: E.isogeny_class()

## Elliptic curves in class 9450.cy

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
9450.cy1 9450ci1 [1, -1, 1, -32930, 2309697] 1 37800 $$\Gamma_0(N)$$-optimal
9450.cy2 9450ci2 [1, -1, 1, 32695, 9834697] 1 113400

## Rank

sage: E.rank()

The elliptic curves in class 9450.cy have rank $$0$$.

## Modular form9450.2.a.cy

sage: E.q_eigenform(10)
$$q + q^{2} + q^{4} - q^{7} + q^{8} + 6q^{11} - 2q^{13} - q^{14} + q^{16} + 3q^{17} + 2q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.