Properties

Label 91.b
Number of curves 3
Conductor 91
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("91.b1")
sage: E.isogeny_class()

Elliptic curves in class 91.b

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
91.b1 91b3 [0, 1, 1, -117, -1245] 1 36  
91.b2 91b1 [0, 1, 1, -7, 5] 3 4 \(\Gamma_0(N)\)-optimal
91.b3 91b2 [0, 1, 1, 13, 42] 3 12  

Rank

sage: E.rank()

The elliptic curves in class 91.b have rank \(1\).

Modular form 91.2.a.b

sage: E.q_eigenform(10)
\( q - 2q^{3} - 2q^{4} - 3q^{5} + q^{7} + q^{9} + 4q^{12} + q^{13} + 6q^{15} + 4q^{16} - 6q^{17} - 7q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.