Show commands for:
SageMath
sage: E = EllipticCurve("a1")
sage: E.isogeny_class()
Elliptic curves in class 800a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality | CM discriminant |
---|---|---|---|---|---|---|
800.d3 | 800a1 | [0, 0, 0, -25, 0] | [2, 2] | 64 | \(\Gamma_0(N)\)-optimal | -4 |
800.d1 | 800a2 | [0, 0, 0, -275, -1750] | [2] | 128 | -16 | |
800.d2 | 800a3 | [0, 0, 0, -275, 1750] | [2] | 128 | -16 | |
800.d4 | 800a4 | [0, 0, 0, 100, 0] | [2] | 128 | -4 |
Rank
sage: E.rank()
The elliptic curves in class 800a have rank \(1\).
Complex multiplication
Each elliptic curve in class 800a has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).Modular form 800.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.