Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([0, 1, 1, 441, -15815]); // or
magma: E := EllipticCurve("77b2");
sage: E = EllipticCurve([0, 1, 1, 441, -15815]) # or
sage: E = EllipticCurve("77b2")
gp: E = ellinit([0, 1, 1, 441, -15815]) \\ or
gp: E = ellinit("77b2")

$$y^2 + y = x^{3} + x^{2} + 441 x - 15815$$

Trivial

## Integral points

magma: IntegralPoints(E);
sage: E.integral_points()
None

## Invariants

 magma: Conductor(E); sage: E.conductor().factor() gp: ellglobalred(E) Conductor: $$77$$ = $$7 \cdot 11$$ magma: Discriminant(E); sage: E.discriminant().factor() gp: E.disc Discriminant: $$-115539436859$$ = $$-1 \cdot 7^{2} \cdot 11^{9}$$ magma: jInvariant(E); sage: E.j_invariant().factor() gp: E.j j-invariant: $$\frac{9463555063808}{115539436859}$$ = $$2^{15} \cdot 7^{-2} \cdot 11^{-9} \cdot 661^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E); sage: E.rank() Rank: $$0$$ magma: Regulator(E); sage: E.regulator() Regulator: $$1$$ magma: RealPeriod(E); sage: E.period_lattice().omega() gp: E.omega Real period: $$0.516303355212$$ magma: TamagawaNumbers(E); sage: E.tamagawa_numbers() gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]] Tamagawa product: $$2$$  = $$2\cdot1$$ magma: Order(TorsionSubgroup(E)); sage: E.torsion_order() gp: elltors(E) Torsion order: $$1$$ magma: MordellWeilShaInformation(E); sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form77.2.a.b

magma: ModularForm(E);
sage: E.q_eigenform(20)
gp: xy = elltaniyama(E);
gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

$$q + q^{3} - 2q^{4} + 3q^{5} + q^{7} - 2q^{9} - q^{11} - 2q^{12} - 4q^{13} + 3q^{15} + 4q^{16} - 6q^{17} + 2q^{19} + O(q^{20})$$

 magma: ModularDegree(E); sage: E.modular_degree() Modular degree: 60 $$\Gamma_0(N)$$-optimal: no Manin constant: not computed

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
sage: r = E.rank();
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: ar = ellanalyticrank(E);
gp: ar/factorial(ar)

$$L(E,1)$$ ≈ $$1.03260671042$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
sage: E.local_data()
gp: ellglobalred(E)
prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$7$$ $$2$$ $$I_{2}$$ Split multiplicative -1 1 2 2
$$11$$ $$1$$ $$I_{9}$$ Non-split multiplicative 1 1 9 9

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: rho = E.galois_representation();
sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$3$$ B.1.2

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 7 11 ss ordinary split nonsplit 2,3 0 1 0 0,0 2 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 3 and 9.
Its isogeny class 77.b consists of 3 curves linked by isogenies of degrees dividing 9.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{-3})$$ $$\Z/3\Z$$ 2.0.3.1-5929.2-b3
3 3.1.44.1 $$\Z/2\Z$$ Not in database
3.1.1323.1 $$\Z/3\Z$$ Not in database
6 6.0.21296.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database
6.0.964467.2 $$\Z/9\Z$$ Not in database
6.0.5250987.1 $$\Z/3\Z \times \Z/3\Z$$ Not in database
6.0.47258883.1 $$\Z/9\Z$$ Not in database
6.0.52272.1 $$\Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.