Properties

Label 6800t
Number of curves 4
Conductor 6800
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("6800.b1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 6800t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
6800.b4 6800t1 [0, 1, 0, -1208, -10412] [2] 6912 \(\Gamma_0(N)\)-optimal
6800.b3 6800t2 [0, 1, 0, -17208, -874412] [2] 13824  
6800.b2 6800t3 [0, 1, 0, -41208, 3205588] [2] 20736  
6800.b1 6800t4 [0, 1, 0, -45208, 2541588] [2] 41472  

Rank

sage: E.rank()
 

The elliptic curves in class 6800t have rank \(1\).

Modular form 6800.2.a.b

sage: E.q_eigenform(10)
 
\( q - 2q^{3} - 4q^{7} + q^{9} - 6q^{11} - 2q^{13} + q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.