# Properties

 Label 62790bt1 Conductor 62790 Discriminant -4484275679769919488000000 j-invariant $$-\frac{522923112164227281987660878881}{4484275679769919488000000}$$ CM no Rank 0 Torsion Structure $$\Z/{12}\Z$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 0, -167843570, 843125287812]); // or
magma: E := EllipticCurve("62790bt1");
sage: E = EllipticCurve([1, 0, 0, -167843570, 843125287812]) # or
sage: E = EllipticCurve("62790bt1")
gp: E = ellinit([1, 0, 0, -167843570, 843125287812]) \\ or
gp: E = ellinit("62790bt1")

$$y^2 + x y = x^{3} - 167843570 x + 843125287812$$

## Mordell-Weil group structure

$$\Z/{12}\Z$$

## Torsion generators

magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp: elltors(E)

$$\left(-2336, 1106818\right)$$

## Integral points

magma: IntegralPoints(E);
sage: E.integral_points()

$$\left(-14972, 7486\right)$$, $$\left(-2336, 1106818\right)$$, $$\left(5764, 256318\right)$$, $$\left(7492, 74878\right)$$, $$\left(9364, 299518\right)$$, $$\left(24964, 3481918\right)$$

Note: only one of each pair $\pm P$ is listed.

## Invariants

 magma: Conductor(E); sage: E.conductor().factor() gp: ellglobalred(E)[1] Conductor: $$62790$$ = $$2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 23$$ magma: Discriminant(E); sage: E.discriminant().factor() gp: E.disc Discriminant: $$-4484275679769919488000000$$ = $$-1 \cdot 2^{24} \cdot 3^{12} \cdot 5^{6} \cdot 7^{2} \cdot 13^{4} \cdot 23$$ magma: jInvariant(E); sage: E.j_invariant().factor() gp: E.j j-invariant: $$-\frac{522923112164227281987660878881}{4484275679769919488000000}$$ = $$-1 \cdot 2^{-24} \cdot 3^{-12} \cdot 5^{-6} \cdot 7^{-2} \cdot 13^{-4} \cdot 23^{-1} \cdot 263^{3} \cdot 1789^{3} \cdot 17123^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E); sage: E.rank() Rank: $$0$$ magma: Regulator(E); sage: E.regulator() Regulator: $$1$$ magma: RealPeriod(E); sage: E.period_lattice().omega() gp: E.omega[1] Real period: $$0.0778847070867$$ magma: TamagawaNumbers(E); sage: E.tamagawa_numbers() gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$13824$$  = $$( 2^{3} \cdot 3 )\cdot( 2^{2} \cdot 3 )\cdot( 2 \cdot 3 )\cdot2\cdot2^{2}\cdot1$$ magma: Order(TorsionSubgroup(E)); sage: E.torsion_order() gp: elltors(E)[1] Torsion order: $$12$$ magma: MordellWeilShaInformation(E); sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 62790.2.a.bu

magma: ModularForm(E);
sage: E.q_eigenform(20)
gp: xy = elltaniyama(E);
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + q^{10} + q^{12} + q^{13} + q^{14} + q^{15} + q^{16} + 6q^{17} + q^{18} - 4q^{19} + O(q^{20})$$

#### Modular degree and optimality

magma: ModularDegree(E);
sage: E.modular_degree()
19021824 . This curve is $$\Gamma_0(N)$$-optimal.

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
sage: r = E.rank();
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: ar = ellanalyticrank(E);
gp: ar[2]/factorial(ar[1])

$$L(E,1)$$ ≈ $$7.47693188032$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
sage: E.local_data()
gp: ellglobalred(E)[5]
prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$24$$ $$I_{24}$$ Split multiplicative -1 1 24 24
$$3$$ $$12$$ $$I_{12}$$ Split multiplicative -1 1 12 12
$$5$$ $$6$$ $$I_{6}$$ Split multiplicative -1 1 6 6
$$7$$ $$2$$ $$I_{2}$$ Split multiplicative -1 1 2 2
$$13$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4
$$23$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13h.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 0 & 3 \end{array}\right)$ and has index 12.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: rho = E.galois_representation();
sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B
$$3$$ B.1.1

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 13 23 split split split split split nonsplit 5 3 1 1 1 0 0 0 0 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3, 4, 6 and 12.
Its isogeny class 62790.bu consists of 8 curves linked by isogenies of degrees dividing 12.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{12}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{-23})$$ $$\Z/2\Z \times \Z/12\Z$$ Not in database
4 4.2.27426672.7 $$\Z/24\Z$$ Not in database
6 $$x^{6}$$ $$\mathstrut +\mathstrut x^{4}$$ $$\mathstrut -\mathstrut 9767 x^{2}$$ $$\mathstrut +\mathstrut 7951152$$ $$\Z/3\Z \times \Z/12\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.