Properties

Label 563a
Number of curves $1$
Conductor $563$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 563a1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(563\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(7\) \( 1 + 5 T + 7 T^{2}\) 1.7.f
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 563a do not have complex multiplication.

Modular form 563.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} - q^{4} - 4 q^{5} + q^{6} - 5 q^{7} + 3 q^{8} - 2 q^{9} + 4 q^{10} - 4 q^{11} + q^{12} + 2 q^{13} + 5 q^{14} + 4 q^{15} - q^{16} - 3 q^{17} + 2 q^{18} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 563a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
563.a1 563a1 \([1, 1, 1, -15, 16]\) \(-374805361/563\) \(-563\) \([]\) \(52\) \(-0.57168\) \(\Gamma_0(N)\)-optimal