Properties

 Label 53312.bb2 Conductor $53312$ Discriminant $8.913\times 10^{12}$ j-invariant $$\frac{20346417}{289}$$ CM no Rank $1$ Torsion structure $$\Z/{2}\Z \times \Z/{2}\Z$$

Related objects

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, -17836, -905520]) # or

sage: E = EllipticCurve("53312bt2")

gp: E = ellinit([0, 0, 0, -17836, -905520]) \\ or

gp: E = ellinit("53312bt2")

magma: E := EllipticCurve([0, 0, 0, -17836, -905520]); // or

magma: E := EllipticCurve("53312bt2");

$$y^2 = x^{3} - 17836 x - 905520$$

Mordell-Weil group structure

$$\Z\times \Z/{2}\Z \times \Z/{2}\Z$$

Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(172, 1056\right)$$ $$\hat{h}(P)$$ ≈ $4.823894992597549$

Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-70, 0\right)$$, $$\left(154, 0\right)$$

Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-84, 0\right)$$, $$\left(-70, 0\right)$$, $$\left(154, 0\right)$$, $$(172,\pm 1056)$$

Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$53312$$ = $$2^{6} \cdot 7^{2} \cdot 17$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$8913043062784$$ = $$2^{18} \cdot 7^{6} \cdot 17^{2}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{20346417}{289}$$ = $$3^{3} \cdot 7^{3} \cdot 13^{3} \cdot 17^{-2}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$4.8238949926$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.413474456272$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$32$$  = $$2^{2}\cdot2^{2}\cdot2$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$4$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

Modular invariants

Modular form 53312.2.a.bb

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - 2q^{5} - 3q^{9} - 2q^{13} - q^{17} + 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 73728 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$3.98911471835$$

Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$4$$ $$I_8^{*}$$ Additive -1 6 18 0
$$7$$ $$4$$ $$I_0^{*}$$ Additive -1 2 6 0
$$17$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X210.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^4\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 2 \\ 14 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 6 \\ 10 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right)$ and has index 48.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ Cs

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add ss ordinary add ss ordinary nonsplit ordinary ordinary ordinary ordinary ordinary ordinary ordinary ss - 5,1 1 - 1,1 1 1 1 1 1 1 1 1 1 1,1 - 0,0 0 - 0,0 0 0 0 0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2.
Its isogeny class 53312.bb consists of 4 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$4$ $$\Q(i, \sqrt{14})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$4$ $$\Q(\sqrt{-14}, \sqrt{17})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$4$ $$\Q(\sqrt{14}, \sqrt{17})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.