Properties

Label 53312.bb
Number of curves $4$
Conductor $53312$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("53312.bb1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 53312.bb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
53312.bb1 53312bt4 [0, 0, 0, -284396, -58375856] [2] 147456  
53312.bb2 53312bt2 [0, 0, 0, -17836, -905520] [2, 2] 73728  
53312.bb3 53312bt3 [0, 0, 0, -2156, -2442160] [2] 147456  
53312.bb4 53312bt1 [0, 0, 0, -2156, 16464] [2] 36864 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 53312.bb have rank \(1\).

Modular form 53312.2.a.bb

sage: E.q_eigenform(10)
 
\( q - 2q^{5} - 3q^{9} - 2q^{13} - q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.