# Properties

 Label 53312.bb Number of curves $4$ Conductor $53312$ CM no Rank $1$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("53312.bb1")

sage: E.isogeny_class()

## Elliptic curves in class 53312.bb

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
53312.bb1 53312bt4 [0, 0, 0, -284396, -58375856]  147456
53312.bb2 53312bt2 [0, 0, 0, -17836, -905520] [2, 2] 73728
53312.bb3 53312bt3 [0, 0, 0, -2156, -2442160]  147456
53312.bb4 53312bt1 [0, 0, 0, -2156, 16464]  36864 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 53312.bb have rank $$1$$.

## Modular form 53312.2.a.bb

sage: E.q_eigenform(10)

$$q - 2q^{5} - 3q^{9} - 2q^{13} - q^{17} + 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 