Properties

Label 53130cr2
Conductor 53130
Discriminant 351347432901696000000
j-invariant \( \frac{1007588745830352584072161}{351347432901696000000} \)
CM no
Rank 1
Torsion Structure \(\Z/{2}\Z \times \Z/{6}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 0, -2088590, -732603900]); // or
magma: E := EllipticCurve("53130cr2");
sage: E = EllipticCurve([1, 0, 0, -2088590, -732603900]) # or
sage: E = EllipticCurve("53130cr2")
gp: E = ellinit([1, 0, 0, -2088590, -732603900]) \\ or
gp: E = ellinit("53130cr2")

\( y^2 + x y = x^{3} - 2088590 x - 732603900 \)

Mordell-Weil group structure

\(\Z\times \Z/{2}\Z \times \Z/{6}\Z\)

Infinite order Mordell-Weil generator and height

magma: Generators(E);
sage: E.gens()

\(P\) =  \( \left(-1148, 12922\right) \)
\(\hat{h}(P)\) ≈  1.38371759017

Torsion generators

magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp: elltors(E)

\( \left(-1220, 610\right) \), \( \left(8680, 792610\right) \)

Integral points

magma: IntegralPoints(E);
sage: E.integral_points()

\( \left(-1220, 610\right) \), \( \left(-1148, 12922\right) \), \( \left(-980, 19810\right) \), \( \left(-770, 20860\right) \), \( \left(-560, 16450\right) \), \( \left(-428, 9322\right) \), \( \left(-420, 8610\right) \), \( \left(1596, -798\right) \), \( \left(1750, 30310\right) \), \( \left(1780, 33610\right) \), \( \left(2380, 87010\right) \), \( \left(3850, 217840\right) \), \( \left(4060, 238210\right) \), \( \left(7996, 698722\right) \), \( \left(8680, 792610\right) \), \( \left(31780, 5643610\right) \), \( \left(37660, 7284130\right) \), \( \left(4790380, 10482279010\right) \)

Note: only one of each pair $\pm P$ is listed.

Invariants

magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
Conductor: \( 53130 \)  =  \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23\)
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
Discriminant: \(351347432901696000000 \)  =  \(2^{12} \cdot 3^{6} \cdot 5^{6} \cdot 7^{6} \cdot 11^{2} \cdot 23^{2} \)
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
j-invariant: \( \frac{1007588745830352584072161}{351347432901696000000} \)  =  \(2^{-12} \cdot 3^{-6} \cdot 5^{-6} \cdot 7^{-6} \cdot 11^{-2} \cdot 13^{6} \cdot 23^{-2} \cdot 593209^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

magma: Rank(E);
sage: E.rank()
Rank: \(1\)
magma: Regulator(E);
sage: E.regulator()
Regulator: \(1.38371759017\)
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
Real period: \(0.129172844773\)
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
Tamagawa product: \( 10368 \)  = \( ( 2^{2} \cdot 3 )\cdot( 2 \cdot 3 )\cdot( 2 \cdot 3 )\cdot( 2 \cdot 3 )\cdot2\cdot2 \)
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
Torsion order: \(12\)
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 53130.2.a.cs

magma: ModularForm(E);
sage: E.q_eigenform(20)
gp: xy = elltaniyama(E);
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

\( q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + q^{10} - q^{11} + q^{12} + 2q^{13} + q^{14} + q^{15} + q^{16} - 6q^{17} + q^{18} - 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

magma: ModularDegree(E);
sage: E.modular_degree()
Modular degree: 2654208
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
sage: r = E.rank();
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: ar = ellanalyticrank(E);
gp: ar[2]/factorial(ar[1])

\( L'(E,1) \) ≈ \( 12.8691890989 \)

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
sage: E.local_data()
gp: ellglobalred(E)[5]
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(12\) \( I_{12} \) Split multiplicative -1 1 12 12
\(3\) \(6\) \( I_{6} \) Split multiplicative -1 1 6 6
\(5\) \(6\) \( I_{6} \) Split multiplicative -1 1 6 6
\(7\) \(6\) \( I_{6} \) Split multiplicative -1 1 6 6
\(11\) \(2\) \( I_{2} \) Non-split multiplicative 1 1 2 2
\(23\) \(2\) \( I_{2} \) Non-split multiplicative 1 1 2 2

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X8.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $$ and has index 6.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: rho = E.galois_representation();
sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) Cs
\(3\) B.1.1

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split split split split nonsplit ordinary ordinary ordinary nonsplit ordinary ordinary ordinary ordinary ordinary ss
$\lambda$-invariant(s) 5 4 2 2 1 1 1 1 1 1 1 1 1 1 1,1
$\mu$-invariant(s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 53130cr consists of 8 curves linked by isogenies of degrees dividing 12.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{6}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
4 \(\Q(\sqrt{11}, \sqrt{161})\) \(\Z/2\Z \times \Z/12\Z\) Not in database
\(\Q(\sqrt{15}, \sqrt{-161})\) \(\Z/2\Z \times \Z/12\Z\) Not in database
\(\Q(\sqrt{-11}, \sqrt{-15})\) \(\Z/2\Z \times \Z/12\Z\) Not in database
6 6.0.110623106187.1 \(\Z/6\Z \times \Z/6\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.