# Properties

 Label 53130.cs Number of curves 8 Conductor 53130 CM no Rank 1 Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("53130.cs1")
sage: E.isogeny_class()

## Elliptic curves in class 53130.cs

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
53130.cs1 53130cr8 [1, 0, 0, -2418345370, -45774911264488] 2 15925248
53130.cs2 53130cr7 [1, 0, 0, -151545890, -711273429360] 2 15925248
53130.cs3 53130cr6 [1, 0, 0, -151146590, -715242391500] 4 7962624
53130.cs4 53130cr5 [1, 0, 0, -29857870, -62785836988] 6 5308416
53130.cs5 53130cr4 [1, 0, 0, -13968590, 19556060100] 6 5308416
53130.cs6 53130cr3 [1, 0, 0, -9421710, -11238222588] 2 3981312
53130.cs7 53130cr2 [1, 0, 0, -2088590, -732603900] 12 2654208
53130.cs8 53130cr1 [1, 0, 0, 389490, -79877628] 6 1327104 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 53130.cs have rank $$1$$.

## Modular form None

sage: E.q_eigenform(10)
$$q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + q^{10} - q^{11} + q^{12} + 2q^{13} + q^{14} + q^{15} + q^{16} - 6q^{17} + q^{18} - 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrrrrrr} 1 & 4 & 2 & 3 & 12 & 4 & 6 & 12 \\ 4 & 1 & 2 & 12 & 3 & 4 & 6 & 12 \\ 2 & 2 & 1 & 6 & 6 & 2 & 3 & 6 \\ 3 & 12 & 6 & 1 & 4 & 12 & 2 & 4 \\ 12 & 3 & 6 & 4 & 1 & 12 & 2 & 4 \\ 4 & 4 & 2 & 12 & 12 & 1 & 6 & 3 \\ 6 & 6 & 3 & 2 & 2 & 6 & 1 & 2 \\ 12 & 12 & 6 & 4 & 4 & 3 & 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.