Properties

Label 51870.l
Number of curves 4
Conductor 51870
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("51870.l1")
sage: E.isogeny_class()

Elliptic curves in class 51870.l

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
51870.l1 51870m4 [1, 1, 0, -78740487, 268900913589] 2 3538944  
51870.l2 51870m2 [1, 1, 0, -4921287, 4200026229] 4 1769472  
51870.l3 51870m3 [1, 1, 0, -4830087, 4363292469] 2 3538944  
51870.l4 51870m1 [1, 1, 0, -313287, 62963829] 2 884736 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()

The elliptic curves in class 51870.l have rank \(0\).

Modular form None

sage: E.q_eigenform(10)
\( q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{7} - q^{8} + q^{9} - q^{10} - 4q^{11} - q^{12} - q^{13} + q^{14} - q^{15} + q^{16} + 2q^{17} - q^{18} - q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.