Properties

Label 46090p
Number of curves $2$
Conductor $46090$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 46090p have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1 + T\)
\(11\)\(1 - T\)
\(419\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 46090p do not have complex multiplication.

Modular form 46090.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - 3 q^{3} + q^{4} + q^{5} - 3 q^{6} + q^{7} + q^{8} + 6 q^{9} + q^{10} + q^{11} - 3 q^{12} + q^{14} - 3 q^{15} + q^{16} + 4 q^{17} + 6 q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 46090p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46090.g2 46090p1 \([1, -1, 1, -966882, 365921889]\) \(99964020929586731506161/81651246490000000\) \(81651246490000000\) \([7]\) \(1419824\) \(2.1741\) \(\Gamma_0(N)\)-optimal
46090.g1 46090p2 \([1, -1, 1, -93701832, -349092134751]\) \(90984613355465878035683930961/249396782289047639290\) \(249396782289047639290\) \([]\) \(9938768\) \(3.1471\)