# Properties

 Label 4290.bb6 Conductor 4290 Discriminant 954068544000000 j-invariant $$\frac{3590017885052913601}{954068544000000}$$ CM no Rank 1 Torsion Structure $$\Z/{2}\Z \times \Z/{6}\Z$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 0, -31900, 1610000]); // or
magma: E := EllipticCurve("4290bb2");
sage: E = EllipticCurve([1, 0, 0, -31900, 1610000]) # or
sage: E = EllipticCurve("4290bb2")
gp: E = ellinit([1, 0, 0, -31900, 1610000]) \\ or
gp: E = ellinit("4290bb2")

$$y^2 + x y = x^{3} - 31900 x + 1610000$$

## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z \times \Z/{6}\Z$$

### Infinite order Mordell-Weil generator and height

magma: Generators(E);
sage: E.gens()

 $$P$$ = $$\left(-178, 1376\right)$$ $$\hat{h}(P)$$ ≈ 1.07260262111

## Torsion generators

magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp: elltors(E)

$$\left(56, -28\right)$$, $$\left(680, 16820\right)$$

## Integral points

magma: IntegralPoints(E);
sage: E.integral_points()

$$\left(-200, 100\right)$$, $$\left(-178, 1376\right)$$, $$\left(-160, 1700\right)$$, $$\left(-100, 2000\right)$$, $$\left(-40, 1700\right)$$, $$\left(20, 980\right)$$, $$\left(50, 350\right)$$, $$\left(56, -28\right)$$, $$\left(152, 452\right)$$, $$\left(160, 700\right)$$, $$\left(200, 1700\right)$$, $$\left(290, 3950\right)$$, $$\left(350, 5600\right)$$, $$\left(680, 16820\right)$$, $$\left(956, 28592\right)$$, $$\left(2000, 88100\right)$$, $$\left(3800, 232100\right)$$, $$\left(26420, 4281080\right)$$

Note: only one of each pair $\pm P$ is listed.

## Invariants

 magma: Conductor(E); sage: E.conductor().factor() gp: ellglobalred(E)[1] Conductor: $$4290$$ = $$2 \cdot 3 \cdot 5 \cdot 11 \cdot 13$$ magma: Discriminant(E); sage: E.discriminant().factor() gp: E.disc Discriminant: $$954068544000000$$ = $$2^{12} \cdot 3^{6} \cdot 5^{6} \cdot 11^{2} \cdot 13^{2}$$ magma: jInvariant(E); sage: E.j_invariant().factor() gp: E.j j-invariant: $$\frac{3590017885052913601}{954068544000000}$$ = $$2^{-12} \cdot 3^{-6} \cdot 5^{-6} \cdot 7^{6} \cdot 11^{-2} \cdot 13^{-2} \cdot 31249^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E); sage: E.rank() Rank: $$1$$ magma: Regulator(E); sage: E.regulator() Regulator: $$1.07260262111$$ magma: RealPeriod(E); sage: E.period_lattice().omega() gp: E.omega[1] Real period: $$0.463239561896$$ magma: TamagawaNumbers(E); sage: E.tamagawa_numbers() gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$1728$$  = $$( 2^{2} \cdot 3 )\cdot( 2 \cdot 3 )\cdot( 2 \cdot 3 )\cdot2\cdot2$$ magma: Order(TorsionSubgroup(E)); sage: E.torsion_order() gp: elltors(E)[1] Torsion order: $$12$$ magma: MordellWeilShaInformation(E); sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form4290.2.a.bb

magma: ModularForm(E);
sage: E.q_eigenform(20)
gp: xy = elltaniyama(E);
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} - 4q^{7} + q^{8} + q^{9} + q^{10} - q^{11} + q^{12} + q^{13} - 4q^{14} + q^{15} + q^{16} - 6q^{17} + q^{18} - 4q^{19} + O(q^{20})$$

#### Modular degree and optimality

magma: ModularDegree(E);
sage: E.modular_degree()
27648 . This curve is not $$\Gamma_0(N)$$-optimal.

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
sage: r = E.rank();
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: ar = ellanalyticrank(E);
gp: ar[2]/factorial(ar[1])

$$L'(E,1)$$ ≈ $$5.96246361951$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
sage: E.local_data()
gp: ellglobalred(E)[5]
prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$12$$ $$I_{12}$$ Split multiplicative -1 1 12 12
$$3$$ $$6$$ $$I_{6}$$ Split multiplicative -1 1 6 6
$$5$$ $$6$$ $$I_{6}$$ Split multiplicative -1 1 6 6
$$11$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$13$$ $$2$$ $$I_{2}$$ Split multiplicative -1 1 2 2

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X8d.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 2 \\ 0 & 1 \end{array}\right)$ and has index 12.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: rho = E.galois_representation();
sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ Cs
$$3$$ B.1.1

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 split split split ordinary nonsplit split ordinary ordinary ss ordinary ordinary ordinary ordinary ordinary ss 2 2 2 1 1 2 1 1 1,1 1 1 1 1 1 1,1 0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0,0

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3 and 6.
Its isogeny class 4290.bb consists of 8 curves linked by isogenies of degrees dividing 12.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{6}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{-39})$$ $$\Z/2\Z \times \Z/12\Z$$ Not in database
4 $$\Q(\sqrt{39}, \sqrt{55})$$ $$\Z/2\Z \times \Z/12\Z$$ Not in database
$$\Q(i, \sqrt{55})$$ $$\Z/2\Z \times \Z/12\Z$$ Not in database
6 6.0.11290363227.1 $$\Z/6\Z \times \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.