Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([0, 1, 1, -23, -50]); // or
magma: E := EllipticCurve("37b1");
sage: E = EllipticCurve([0, 1, 1, -23, -50]) # or
sage: E = EllipticCurve("37b1")
gp: E = ellinit([0, 1, 1, -23, -50]) \\ or
gp: E = ellinit("37b1")

$$y^2 + y = x^{3} + x^{2} - 23 x - 50$$

Mordell-Weil group structure

$$\Z/{3}\Z$$

Torsion generators

magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp: elltors(E)

$$\left(8, 18\right)$$

Integral points

magma: IntegralPoints(E);
sage: E.integral_points()

$$\left(8, 18\right)$$

Note: only one of each pair $\pm P$ is listed.

Invariants

 magma: Conductor(E); sage: E.conductor().factor() gp: ellglobalred(E) Conductor: $$37$$ = $$37$$ magma: Discriminant(E); sage: E.discriminant().factor() gp: E.disc Discriminant: $$50653$$ = $$37^{3}$$ magma: jInvariant(E); sage: E.j_invariant().factor() gp: E.j j-invariant: $$\frac{1404928000}{50653}$$ = $$2^{15} \cdot 5^{3} \cdot 7^{3} \cdot 37^{-3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

 magma: Rank(E); sage: E.rank() Rank: $$0$$ magma: Regulator(E); sage: E.regulator() Regulator: $$1$$ magma: RealPeriod(E); sage: E.period_lattice().omega() gp: E.omega Real period: $$2.17704318581$$ magma: TamagawaNumbers(E); sage: E.tamagawa_numbers() gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]] Tamagawa product: $$3$$  = $$3$$ magma: Order(TorsionSubgroup(E)); sage: E.torsion_order() gp: elltors(E) Torsion order: $$3$$ magma: MordellWeilShaInformation(E); sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

Modular invariants

Modular form37.2.a.b

magma: ModularForm(E);
sage: E.q_eigenform(20)
gp: xy = elltaniyama(E);
gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

$$q + q^{3} - 2q^{4} - q^{7} - 2q^{9} + 3q^{11} - 2q^{12} - 4q^{13} + 4q^{16} + 6q^{17} + 2q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 magma: ModularDegree(E); sage: E.modular_degree() Modular degree: 2 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
sage: r = E.rank();
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: ar = ellanalyticrank(E);
gp: ar/factorial(ar)

$$L(E,1)$$ ≈ $$0.725681061936$$

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
sage: E.local_data()
gp: ellglobalred(E)
prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$37$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3

Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: rho = E.galois_representation();
sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$3$$ Cs.1.1

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) 2 3 37 ss ordinary split 0,5 0 1 0,0 1 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 3.
Its isogeny class 37b consists of 3 curves linked by isogenies of degrees dividing 9.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{-3})$$ $$\Z/3\Z \times \Z/3\Z$$ 2.0.3.1-1369.2-b3
3 3.3.148.1 $$\Z/6\Z$$ Not in database
6 6.0.591408.1 $$\Z/3\Z \times \Z/6\Z$$ Not in database
6.6.810448.1 $$\Z/2\Z \times \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.

This is the last elliptic curve over $\Q$ of prime conductor $N$ and discriminant $\Delta = \pm N^e$ with $e > 2$ (and, as it happens, the only one with $\Delta > 0$). The others are the modular curves $X_0(N)$ for N=11 [11.a2], N=17 [17.a3], and N=19 [19.a2] (with $e=5,4,3$ respectively -- in each case, as here with $(N,e)=(37,3)$, the exponent $e$ is the numerator of $(N-1)/12$).