Minimal Weierstrass equation
magma: E := EllipticCurve("35a2");
sage: E = EllipticCurve("35a2")
gp: E = ellinit("35a2")
\( y^2 + y = x^{3} + x^{2} - 131 x - 650 \)
Mordell-Weil group structure
Integral points
Invariants
magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
|
|||||
\( N \) | = | \( 35 \) | = | \(5 \cdot 7\) | |
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
|
|||||
\(\Delta\) | = | \(-13671875 \) | = | \(-1 \cdot 5^{9} \cdot 7 \) | |
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
|
|||||
\(j \) | = | \( -\frac{250523582464}{13671875} \) | = | \(-1 \cdot 2^{15} \cdot 5^{-9} \cdot 7^{-1} \cdot 197^{3}\) | |
\( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication) | ||
\( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ |
BSD invariants
magma: Rank(E);
sage: E.rank()
|
|||
\( r \) | = | \(0\) | |
magma: Regulator(E);
sage: E.regulator()
|
|||
\( \text{Reg} \) | = | \(1\) | |
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
|
|||
\( \Omega \) | ≈ | \(0.702911239135\) | |
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
|
|||
\( \prod_p c_p \) | = | \( 1 \) = \( 1\cdot1 \) | |
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
|
|||
\( \#E_{\text{tor}} \) | = | \(1\) | |
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
|
|||
Ш\(_{\text{an}} \) | = | \(1\) (exact) |
Modular invariants
Modular form 35.2.1.a
gp: deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
Modular degree and optimality
Special L-value attached to the curve
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: ar[2]/factorial(ar[1])
\( L(E,1) \) ≈ \( 0.702911239135 \)
Local data
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(5\) | \(1\) | \( I_{9} \) | Non-split multiplicative | 1 | 1 | 9 | 9 |
\(7\) | \(1\) | \( I_{1} \) | Split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The 2-adic representation attached to this elliptic curve is surjective.
sage: [rho.image_type(p) for p in rho.non_surjective()]
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(3\) | B.1.2 |
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 |
---|---|---|---|---|
Reduction type | ss | ordinary | nonsplit | split |
$\lambda$-invariant(s) | 0,5 | 0 | 0 | 1 |
$\mu$-invariant(s) | 0,0 | 2 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3 and 9.
Its isogeny class 35.a
consists of 3 curves linked by isogenies of
degrees dividing 9.
Growth of torsion in number fields
The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base-change curve |
---|---|---|---|
2 | \(\Q(\sqrt{-3}) \) | \(\Z/3\Z\) | 2.0.3.1-1225.2-a1 |
3 | 3.1.140.1 | \(\Z/2\Z\) | Not in database |
3.1.1323.1 | \(\Z/3\Z\) | Not in database | |
6 | 6.0.529200.1 | \(\Z/6\Z\) | Not in database |
6.0.686000.1 | \(\Z/2\Z \times \Z/2\Z\) | Not in database | |
6.0.964467.2 | \(\Z/9\Z\) | Not in database | |
6.0.5250987.1 | \(\Z/3\Z \times \Z/3\Z\) | Not in database | |
6.0.47258883.1 | \(\Z/9\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.