Properties

Label 325.a
Number of curves 2
Conductor 325
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("325.a1")
sage: E.isogeny_class()

Elliptic curves in class 325.a

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
325.a1 325e2 [0, -1, 1, -12708, -547182] 1 420  
325.a2 325e1 [0, -1, 1, -98, 378] 5 84 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()

The elliptic curves in class 325.a have rank \(0\).

Modular form 325.2.a.a

sage: E.q_eigenform(10)
\( q - 2q^{2} - q^{3} + 2q^{4} + 2q^{6} - 2q^{7} - 2q^{9} + 2q^{11} - 2q^{12} + q^{13} + 4q^{14} - 4q^{16} - 2q^{17} + 4q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.