# Properties

 Label 32064g Number of curves 2 Conductor 32064 CM no Rank 0 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("32064.b1")
sage: E.isogeny_class()

## Elliptic curves in class 32064g

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
32064.b2 32064g1 [0, -1, 0, -289, -7775] 2 27648 $$\Gamma_0(N)$$-optimal
32064.b1 32064g2 [0, -1, 0, -7969, -270431] 2 55296

## Rank

sage: E.rank()

The elliptic curves in class 32064g have rank $$0$$.

## Modular form None

sage: E.q_eigenform(10)
$$q - q^{3} - 2q^{5} - 4q^{7} + q^{9} + 4q^{11} + 2q^{15} - 4q^{17} + 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 