Properties

Label 30767d
Number of curves 1
Conductor 30767
CM no
Rank 3

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("30767.a1")
sage: E.isogeny_class()

Elliptic curves in class 30767d

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
30767.a1 30767d1 [0, 0, 1, -31, 60] 1 13632 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()

The elliptic curve 30767d1 has rank \(3\).

Modular form None

sage: E.q_eigenform(10)
\( q - 2q^{2} - 3q^{3} + 2q^{4} - 2q^{5} + 6q^{6} - 3q^{7} + 6q^{9} + 4q^{10} + q^{11} - 6q^{12} - 6q^{13} + 6q^{14} + 6q^{15} - 4q^{16} - 5q^{17} - 12q^{18} - 4q^{19} + O(q^{20}) \)