Properties

 Label 302.c Number of curves 2 Conductor 302 CM no Rank 1 Graph Related objects

Show commands for: SageMath
sage: E = EllipticCurve("302.c1")
sage: E.isogeny_class()

Elliptic curves in class 302.c

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
302.c1 302a1 [1, 1, 1, -230, 1251] 5 120 $$\Gamma_0(N)$$-optimal
302.c2 302a2 [1, 1, 1, 1650, -27389] 1 600

Rank

sage: E.rank()

The elliptic curves in class 302.c have rank $$1$$.

Modular form302.2.a.c

sage: E.q_eigenform(10)
$$q + q^{2} - q^{3} + q^{4} - 4q^{5} - q^{6} - 2q^{7} + q^{8} - 2q^{9} - 4q^{10} + 2q^{11} - q^{12} - 6q^{13} - 2q^{14} + 4q^{15} + q^{16} + 3q^{17} - 2q^{18} + O(q^{20})$$

Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)$$

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 