Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, -99, 378])

gp: E = ellinit([0, 0, 0, -99, 378])

magma: E := EllipticCurve([0, 0, 0, -99, 378]);

$$y^2=x^3-99x+378$$ ## Mordell-Weil group structure

$$\Z/{2}\Z$$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(6, 0\right)$$ ## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(6, 0\right)$$ ## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)  magma: Conductor(E); Conductor: $$288$$ = $$2^{5} \cdot 3^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$373248$$ = $$2^{9} \cdot 3^{6}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$287496$$ = $$2^{3} \cdot 3^{3} \cdot 11^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z[\sqrt{-4}]$$ (potential complex multiplication) Sato-Tate group: $N(\mathrm{U}(1))$ Faltings height: $$-0.068079601017509363137420343384\dots$$ Stable Faltings height: $$-1.1372461307715231908979670529\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$0$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1$$ sage: E.period_lattice().omega()  gp: E.omega  magma: RealPeriod(E); Real period: $$3.0276912696024942909434725134\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$2$$  = $$1\cdot2$$ sage: E.torsion_order()  gp: elltors(E)  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

magma: ModularForm(E);

$$q + 2q^{5} + 6q^{13} - 2q^{17} + O(q^{20})$$ For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 32 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L(E,1)$$ ≈ $$1.5138456348012471454717362566780873986$$

## Local data

This elliptic curve is not semistable. There are 2 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$1$$ $$I_0^{*}$$ Additive 1 5 9 0
$$3$$ $$2$$ $$I_0^{*}$$ Additive -1 2 6 0

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image for all primes $$p < 1000$$ .

The image is a Borel subgroup if $$p=2$$, the normalizer of a split Cartan subgroup if $$\left(\frac{ -1 }{p}\right)=+1$$ or the normalizer of a nonsplit Cartan subgroup if $$\left(\frac{ -1 }{p}\right)=-1$$.

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

$p$ Reduction type 2 3 add add - - - -

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 288d consists of 3 curves linked by isogenies of degrees dividing 4.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{2})$$ $$\Z/2\Z \times \Z/2\Z$$ 2.2.8.1-2592.1-d5 $2$ $$\Q(\sqrt{6})$$ $$\Z/4\Z$$ 2.2.24.1-32.1-a4 $2$ $$\Q(\sqrt{3})$$ $$\Z/4\Z$$ 2.2.12.1-64.1-a4 $4$ $$\Q(\sqrt{2}, \sqrt{3})$$ $$\Z/2\Z \times \Z/4\Z$$ 4.4.2304.1-64.1-b4 $8$ 8.0.339738624.5 $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ $$\Q(\zeta_{48})^+$$ $$\Z/2\Z \times \Z/8\Z$$ Not in database $8$ 8.0.21233664.2 $$\Z/8\Z$$ Not in database $8$ 8.2.143327232.1 $$\Z/12\Z$$ Not in database $8$ 8.0.663552000.1 $$\Z/10\Z$$ Not in database $16$ 16.0.1846757322198614016.5 $$\Z/4\Z \times \Z/4\Z$$ Not in database $16$ 16.0.115422332637413376.2 $$\Z/2\Z \times \Z/8\Z$$ Not in database $16$ 16.0.20542695432781824.1 $$\Z/3\Z \times \Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/10\Z$$ Not in database $16$ 16.4.5258930030792146944.1 $$\Z/2\Z \times \Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/10\Z$$ Not in database $16$ Deg 16 $$\Z/20\Z$$ Not in database $16$ Deg 16 $$\Z/20\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.