Show commands for:
SageMath
sage: E = EllipticCurve("a1")
sage: E.isogeny_class()
Elliptic curves in class 288a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality | CM discriminant |
---|---|---|---|---|---|---|
288.a2 | 288a1 | [0, 0, 0, 3, 0] | [2] | 16 | \(\Gamma_0(N)\)-optimal | -4 |
288.a1 | 288a2 | [0, 0, 0, -12, 0] | [2] | 32 | -4 |
Rank
sage: E.rank()
The elliptic curves in class 288a have rank \(1\).
Complex multiplication
Each elliptic curve in class 288a has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).Modular form 288.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.