Properties

Label 27200z
Number of curves 4
Conductor 27200
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("27200.p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 27200z

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
27200.p4 27200z1 [0, 1, 0, -4833, 78463] [2] 55296 \(\Gamma_0(N)\)-optimal
27200.p3 27200z2 [0, 1, 0, -68833, 6926463] [2] 110592  
27200.p2 27200z3 [0, 1, 0, -164833, -25809537] [2] 165888  
27200.p1 27200z4 [0, 1, 0, -180833, -20513537] [2] 331776  

Rank

sage: E.rank()
 

The elliptic curves in class 27200z have rank \(0\).

Modular form 27200.2.a.p

sage: E.q_eigenform(10)
 
\( q - 2q^{3} + 4q^{7} + q^{9} - 6q^{11} + 2q^{13} + q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.