Properties

Label 246.g
Number of curves $2$
Conductor $246$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 246.g have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(41\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 246.g do not have complex multiplication.

Modular form 246.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} - 2 q^{7} + q^{8} + q^{9} + q^{10} + 2 q^{11} + q^{12} - q^{13} - 2 q^{14} + q^{15} + q^{16} - 7 q^{17} + q^{18} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 246.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
246.g1 246b2 \([1, 0, 0, -579535, -169860007]\) \(-21525971829968662032241/11122195296\) \(-11122195296\) \([]\) \(1500\) \(1.6951\)  
246.g2 246b1 \([1, 0, 0, -175, -27847]\) \(-592915705201/334302806016\) \(-334302806016\) \([5]\) \(300\) \(0.89036\) \(\Gamma_0(N)\)-optimal